题意:

  明明和亮亮在玩一个游戏。

  桌面上一行有n个格子,一些格子中放着棋子。

  明明和亮亮轮流选择如下方式中的一种移动棋子(图示中o表示棋子,*表示空着的格子):

  (1)当一枚棋子的右边是空格子的话,可以将这枚棋子像右移动一格。

    **o***         ->           ***o**

  (2)当一枚棋子的右边连续两个都有棋子,并且这个棋子往右边数第3格没有棋子,那么可以将这个棋子可以跳过去那两个棋子

    **ooo*        ->           ***oo*

  当任何一枚棋子到达最右边的格子时,这枚棋子自动消失。

  当一方不能移动时,这方输。

  假设明明和亮亮都采取最优策略,明明先走,谁将取胜?

题解:

  走一步和走三步都是走奇数步。

  所以统计一下每个棋子到终点的步数之和tot。如果tot为奇数,则先手胜,否则后手胜。

AC Code:

 #include <iostream>
#include <stdio.h>
#include <string.h> using namespace std; int n,t;
int tot; int main()
{
cin>>t;
while(t--)
{
cin>>n;
tot=;
char c;
for(int i=n-;i>=;i--)
{
cin>>c;
if(c=='o') tot+=i;
}
if(tot&) cout<<"M"<<endl;
else cout<<"L"<<endl;
}
}

Game

【题目描述】

明明和亮亮在玩一个游戏。桌面上一行有n个格子,一些格子中放着棋子。明明和亮亮轮流选择如下方式中的一种移动棋子(图示中o表示棋子,*表示空着的格子):

1)当一枚棋子的右边是空格子的话,可以将这枚棋子像右移动一格。

**o***         ->           ***o**

2)当一枚棋子的右边连续两个都有棋子,并且这个棋子往右边数第3格没有棋子,那么可以将这个棋子可以跳过去那两个棋子

**ooo*        ->           ***oo*

当任何一枚棋子到达最右边的格子时,这枚棋子自动消失。当一方不能移动时,这方输。假设明明和亮亮都采取最优策略,明明先走,谁将取胜?

TYOI 1015 Game:博弈 结论【步数之和的奇偶性】的更多相关文章

  1. 关于NIM博弈结论的证明

    关于NIM博弈结论的证明 NIM博弈:有k(k>=1)堆数量不一定的物品(石子或豆粒…)两人轮流取,每次只能从一堆中取若干数量(小于等于这堆物品的数量)的物品,判定胜负的条件就是,最后一次取得人 ...

  2. 【NOIP 模拟赛】 道路

    题目描述在二维坐标平面里有 N 个整数点,信息班某一巨佬要访问这 N 个点.刚开始巨佬在点(0,0)处. 每一步,巨佬可以走到上.下.左.右四个点.即假设巨佬当前所在点的坐标是(x,y),那么它下一步 ...

  3. NOIP2017提高组模拟赛 8(总结)

    NOIP2017提高组模拟赛 8(总结) 第一题 路径 在二维坐标平面里有N个整数点,Bessie要访问这N个点.刚开始Bessie在点(0,0)处. 每一步,Bessie可以走到上.下.左.右四个点 ...

  4. 简单易懂的博弈论讲解(巴什博弈、尼姆博弈、威佐夫博弈、斐波那契博弈、SG定理)

    博弈论入门: 巴什博弈: 两个顶尖聪明的人在玩游戏,有一堆$n$个石子,每次每个人能取$[1,m]$个石子,不能拿的人输,请问先手与后手谁必败? 我们分类讨论一下这个问题: 当$n\le m$时,这时 ...

  5. UVA 10795 A Different Task(汉诺塔 递归))

    A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefl ...

  6. DFS中的奇偶剪枝学习笔记

    奇偶剪枝学习笔记 描述 编辑 现假设起点为(sx,sy),终点为(ex,ey),给定t步恰好走到终点, s | | | + — — — e 如图所示(“|”竖走,“—”横走,“+”转弯),易证abs( ...

  7. 「UOJ351」新年的叶子

    「UOJ351」新年的叶子 题目描述 有一棵大小为 \(n\) 的树,每次随机将一个叶子染黑,可以重复染,问期望染多少次后树的直径会缩小. \(1 \leq n \leq 5 \times 10^5\ ...

  8. acm博弈论基础总结

    acm博弈论基础总结 常见博弈结论 Nim 问题:共有N堆石子,编号1..n,第i堆中有个a[i]个石子. 每一次操作Alice和Bob可以从任意一堆石子中取出任意数量的石子,至少取一颗,至多取出这一 ...

  9. Ideas and Tricks

    1.树上拓扑排序计数 结论$\dfrac{n!}{\prod\limits_{i=1}^n size_i}$ 对于节点$i$,其子树随意排序的结果是$size[i]!$ 但$i$需要排在第一位,只有$ ...

随机推荐

  1. Android开发人员不得不收集的代码(转)

    App相关→AppUtils.java 安装App installApp 卸载指定包名的App uninstallApp 获取当前App信息 getAppInfo 获取所有已安装App信息 getAl ...

  2. java查看工具jstack-windows

    Prints Java thread stack traces for a Java process, core file, or remote debug server. This command ...

  3. ushare编译之 ‘struct sockaddr_storage’ has no member named ‘s_addr’

    编译ushare的时候出现'struct sockaddr_storage' has no member named 's_addr' 这是使用libupnp1.6.19出现版本号不兼容的错误. 解决 ...

  4. 重读金典------高质量C编程指南(林锐)-------第一章 文件结构

    第一章  文件结构       C/C++程序通常由两个文件组成,一个文件保存程序的声明,称为头文件,.h 文件.一个保存程序的实现,称为定义文件.c文件. 1.1 版权与版本的声明 版权和版本的声明 ...

  5. matlab-1

    1.size():获取矩阵的行数和列数 (1)s=size(A), 当只有一个输出参数时,返回一个行向量,该行向量的第一个元素时矩阵的行数,第二个元素是矩阵的列数.(2)[r,c]=size(A),当 ...

  6. 多系统启动光盘制作---WIN7+WinXP+老毛桃PE工具箱

    1.工具: ⑴ Windows 7 ISO: ⑵ Windows XP ISO: ⑶ 老毛桃U盘启动盘制作工具V2013 制作得的ISO (含PE.DOS等): ⑷ UltraISO.EasyBoot ...

  7. Bootstrap--常用及实例合集

    栅格系统 1. row必须放到container和container-fluid里面        2. 你的内容应当放置于“列(column)”内,并且,只有“列(column)”可以作为行(row ...

  8. js的常用小技巧

    //类对象转成数组 var domNodes = Array.prototype.slice.call(document.getElementsByTagName("*"));   ...

  9. Node.js下载及安装

    Node.js是一个基于Chrome JavaScript运行时建立的平台, 用于方便地搭建响应速度快.易于扩展的网络应用. Node.js 使用事件驱动, 非阻塞I/O 模型而得以轻量和高效,非常适 ...

  10. request 防盗链

    package request; import java.io.IOException;import javax.servlet.ServletException;import javax.servl ...