在两个字符串中,有些字符会一样,可以形成的子序列也有可能相等,因此,长度最长的相等子序列便是两者间的最长公共字序列,其长度可以使用动态规划来求。

以s1={1,3,4,5,6,7,7,8},s2={3,5,7,4,8,6,7,8,2}为例。

借用《算法导论》中的推导图:

创建 DP数组C[][];

图中的空白格子需要填上相应的数字(这个数字就是c[i][j]的定义,记录的LCS的长度值)。填的规则依据递归公式,简单来说:如果横竖(i,j)对应的两个元素相等,该格子的值 = c[i-1,j-1] + 1。如果不等,取c[i-1,j] 和 c[i,j-1]的最大值。首先初始化该表:

然后,一行一行地从上往下填:

S1的元素3 与 S2的元素3 相等,所以 c[2,1] = c[1,0] + 1。继续填充:

S1的元素3 与 S2的元素5 不等,c[2,2] =max(c[1,2],c[2,1]),图中c[1,2] 和 c[2,1] 背景色为浅黄色。

继续填充:

中间几行填写规则不变,直接跳到最后一行:

至此,该表填完。根据性质,c[8,9] = S1 和 S2 的 LCS的长度,即为5。

得到公式

代码

#include<iostream>

#include<cstdio>

#include<cstring>

#include<string>

using namespace std;

const int MAXN = 1005;

int DP[MAXN][MAXN];

int main()

{

string a;

string b;

while(cin >> a >> b)

{

int l1 = a.size();

int l2 = b.size();

memset(DP, 0, sizeof(DP));

for(int i = 1; i <= l1; i++)

for(int j = 1; j <= l2; j++)

if(a[i - 1] == b[j - 1])

DP[i][j] = max(DP[i][j], DP[i - 1][j - 1] + 1);

else

DP[i][j] = max(DP[i][j - 1], DP[i - 1][j]);

printf("%d\n", DP[l1][l2]);

}

return 0;

}

当得到完整的DP表之后,我们可以通过倒推来得到相应的子序列

S1和S2的最LCS并不是只有1个,本文并不是着重讲输出两个序列的所有LCS,只是介绍如何通过上表,输出其中一个LCS。

我们根据递归公式构建了上表,我们将从最后一个元素c[8][9]倒推出S1和S2的LCS。

c[8][9] = 5,且S1[8] != S2[9],所以倒推回去,c[8][9]的值来源于c[8][8]的值(因为c[8][8] > c[7][9])。

c[8][8] = 5,  且S1[8] = S2[8], 所以倒推回去,c[8][8]的值来源于 c[7][7]。

以此类推,如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,这里请都选择一个方向(之后遇到这样的情况,也选择相同的方向)。

第一种结果为:

这就是倒推回去的路径,棕色方格为相等元素,即LCS = {3,4,6,7,8},这是其中一个结果。

如果如果遇到S1[i] != S2[j] ,且c[i-1][j] = c[i][j-1] 这种存在分支的情况,选择另一个方向,会得到另一个结果。

即LCS ={3,5,7,7,8}。

在倒推时,如果s1[i] == s2[j] 就跳转到c[i - 1][j - 1],如果s1[i] != s1[j], 就向前找或向上找(只能一个方向)

PS:在代码中和解说中代码细节有所不同,在解说图中s从下标1开始,在代码中从下标0开始。

---------------------

作者:someone_and_anyone

来源:CSDN

原文:https://blog.csdn.net/someone_and_anyone/article/details/81044153

LCS最大公共子序列【转载】的更多相关文章

  1. python3 lcs 最大公共子序列

    抛出问题: 假定字符串 s1 = 'BDCABA', s2 = 'ABCBDAB',求s1和s2的最大公共子序列. 问题分析: 我们想要求出s1和s2的最大公共子序列,我们可以用c(i,j)表示s1( ...

  2. LCS最大公共子序列问题

    在生物应用中,经常需要比较两个(或多个)不同生物体的DNA, 例如:某种生物的DNA可能为S1=ACCGGTCGAGTGCGCGGAAGCCGGCCGAA, 另一种生物的DNA可能为S2=GTCGTT ...

  3. 动态规划之LCS(最大公共子序列)

    #include <stdio.h> #include <string.h> int b[50][50]; int c[50][50]; int length = 0; voi ...

  4. Poj1159 Palindrome(动态规划DP求最大公共子序列LCS)

    一.Description A palindrome is a symmetrical string, that is, a string read identically from left to ...

  5. Advanced Fruits (最大公共子序列的路径打印)

    The company "21st Century Fruits" has specialized in creating new sorts of fruits by trans ...

  6. hdu 1243 反恐训练营(dp 最大公共子序列变形)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1243 d[i][j] 代表第i 个字符与第 j 个字符的最大的得分.,, 最大公共子序列变形 #inclu ...

  7. spoj Longest Common Substring (多串求最大公共子序列)

    题目链接: https://vjudge.net/problem/SPOJ-LCS 题意: 最多10行字符串 求最大公共子序列 数据范围: $1\leq |S| \leq100000$ 分析: 让他们 ...

  8. POJ - 2250 Compromise (LCS打印序列)

    题意:给你两个单词序列,求出他们的最长公共子序列. 多组数据输入,单词序列长度<=100,单词长度<=30 因为所有组成LCS的单词都是通过 a[i] == b[j] 更新的. 打印序列的 ...

  9. Common Subsequence 最大公共子序列问题

    Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...

随机推荐

  1. webpack-dev-server原理及要点笔记

    webpack-dev-server启动了一个使用express的Http服务器,这个服务器与客户端采用websocket通信协议,当原始文件发生改变,webpack-dev-server会实时编译. ...

  2. 写xml时候的一个坑

    <DOCTYPE scores[]>这一行总是显示错误,折腾了一晚上,后来无意错误在于:<!ELEMENT scores(student+)>应该写成:<!ELEMENT ...

  3. kvm初体验之七:attach usb storage device to a VM

    1. virsh attach-disk vm1 /dev/sdb sdc 将host上的/dev/sdb挂载到vm1的/dev/sdc上 2. virsh detach-disk vm1 sdc 将 ...

  4. Java丨角色权限控制——数据库设计

    相信各位读者对于角色权限管理这个需求并不陌生.那么是怎么实现的呢?今天小编来说道说道! 1.首先我们来进行数据库的设计,如何设计数据库是实现权限控制的关键: 1)用户表: id:主键.自增.int n ...

  5. [acm]HDOJ 2059 龟兔赛跑

    题目地址: http://acm.hdu.edu.cn/showproblem.php?pid=2059 起点和终点,共n+2个点,n+2个状态,简单DP即可. //11512698 2014-08- ...

  6. CodeForces - 592D: Super M(虚树+树的直径)

    Ari the monster is not an ordinary monster. She is the hidden identity of Super M, the Byteforces’ s ...

  7. HihoCoder1670 : 比赛日程安排([Offer收割]编程练习赛41)(模拟)

    描述 H国编程联赛中有N只队伍,编号1~N. 他们计划在2018年一共进行M场一(队)对一(队)的比赛. 为了让参赛队员能得到充分的休息,联赛组委会决定:每支队伍连续两场比赛之间至少间隔一天.也就是如 ...

  8. 每天一个linux命令(4):pwd命令

    版权声明更新:2017-05-08博主:LuckyAlan联系:liuwenvip163@163.com声明:吃水不忘挖井人,转载请注明出处! 1 文章介绍 本文介绍了Linux下命令cd. 2 开发 ...

  9. BZOJ_4987_Tree_树形DP

    BZOJ_4987_Tree_树形DP Description 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. Input 第一 ...

  10. 「BZOJ2721」「LuoguP1445」 [Violet]樱花(数论

    题目背景 我很愤怒 题目描述 求方程 $\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$ 的正整数解的组数,其中$N≤10^6$. 解的组数,应模$1e9+7$. 输入输出格 ...