工作中遇到的一个问题: 统计各地区新能源汽车的充电时长 数据来源是北理新源的单日全球的运行数据。

这里仅统计北上广重庆四个地区的 数据处理的代码就省略了 需要整理好的是4个dataframe(数据已保存为H5格式) 分别是对应上述4个城市的:

import pandas as pd
from pyecharts import Boxplot,Pie,Page
theme_echart='infographic' location_list=['shanghai','chongqing','guangdong','beijing']
ans_vid={} for i in location_list:
ans_vid[i]=pd.read_hdf(i+'_charging.h5',encoding='gbk') location_list_chinese=['上海','重庆','广东','北京'];
for i in range(len(location_list_chinese)):
ans_vid[location_list_chinese[i]] = ans_vid.pop(location_list[i])

 

例:

这时候我们需要提取其中的时间序列统计所有vid的 充电状态为1的第一个时间和最后一个时间 即为该车的充电时长

代码如下:

page=Page()
for i in location_list_chinese:
ans_vid[i]=ans_vid[i][ans_vid[i]['充电状态']=='1.0']
temp1=ans_vid[i].drop_duplicates(['vid'],keep='last')
temp2=ans_vid[i].drop_duplicates(['vid'],keep='first')
a=temp2['上报时间']
b=temp1['上报时间']
a=a.reset_index()
b=b.reset_index()
a=a.drop(['index'],axis=1)
b=b.drop('index',axis=1)
a['上报时间']=a['上报时间'].astype(str)
a['上报时间']=a['上报时间'].apply(lambda v: v[0:4]+'-'+v[4:6]+'-'+v[6:8]+' '+v[8:10]+':'+v[10:12]+':'+v[12:14])
b['上报时间']=b['上报时间'].astype(str)
b['上报时间']=b['上报时间'].apply(lambda v: v[0:4]+'-'+v[4:6]+'-'+v[6:8]+' '+v[8:10]+':'+v[10:12]+':'+v[12:14])
b['上报时间']=pd.to_datetime(b['上报时间'])
a['上报时间']=pd.to_datetime(a['上报时间'])
temp=b['上报时间']-a['上报时间']
temp=pd.DataFrame(temp)
temp['上报时间']=temp['上报时间'].dt.total_seconds()/3600
temp['充电时长']=temp['上报时间'].astype(str)
temp['充电时长'][temp['上报时间']<=1]='<1h'
temp['充电时长'][(temp['上报时间']>1) & (temp['上报时间']<=4)]='1-4h'
temp['充电时长'][(temp['上报时间']>4) & (temp['上报时间']<=8)]='4-8h'
temp['充电时长'][temp['上报时间']>8]='>8h'
local_charging_time=temp['充电时长'].value_counts()
box=Boxplot(i+'地区充电时长统计')
pie=Pie(i+'地区充电时长统计')
box.use_theme(theme_echart)
pie.use_theme(theme_echart)
# kwargs = dict(name = i,
# x_axis = list(local_charging_time.index),
# y_axis = list(local_charging_time.values),
# is_legend_show=False,
# is_label_show=True
# )
# bar.add(**kwargs)
x=list(local_charging_time.index);
y=list(local_charging_time.values);
pie.add("",x,y,radius=(40,75),
is_label_show=True,legend_orient = 'vertical',
legend_pos = 'left',legend_top='center')
# box画图
y_axis =[]
for j in x:
y_axis.append(list(temp['上报时间'][temp['充电时长']==j]))
y=box.prepare_data(y_axis)
box.add(i+'地区各充电时长分布', x, y,xaxis_name='',
yaxis_name='充电时长[h]',is_legend_show=True,legend_pos='right',is_label_show=True,yaxis_name_gap=45,xaxis_type='category',xaxis_rotate=0)
page.add(pie)
page.add(box)
del box,pie page.render('北上广重地区充电时长统计_v2.html')

  可以看到核心处理程序是pd.to_datetime(a['上报时间']) 转化为时间格式之后 用两列相减得到时间差格式的temp

  temp['上报时间']=temp['上报时间'].dt.total_seconds()/3600 # 此处提取时间差格式的秒数, 再折算成小时

结果如下图:

一个相似的例子是需要统计这四个地区的充电开始时段的分布(根据电网电价的需求而来)

核心是将连续的时间格式字符Series集成转化成时间格式,即'20190101235502'转化成 2019-01-01 23:55:02

代码:

a['上报时间']=a['上报时间'].apply(lambda v: v[0:4]+'-'+v[4:6]+'-'+v[6:8]+' '+v[8:10]+':'+v[10:12]+':'+v[12:14]) # 整列按照既定方法修改

然后调用pd.to_datetime

pandas时间数据的集成处理的更多相关文章

  1. pandas小记:pandas时间序列分析和处理Timeseries

    http://blog.csdn.net/pipisorry/article/details/52209377 其它时间序列处理相关的包 [P4J 0.6: Periodic light curve ...

  2. pandas学习(数据分组与分组运算、离散化处理、数据合并)

    pandas学习(数据分组与分组运算.离散化处理.数据合并) 目录 数据分组与分组运算 离散化处理 数据合并 数据分组与分组运算 GroupBy技术:实现数据的分组,和分组运算,作用类似于数据透视表 ...

  3. Pandas DataFrame数据的增、删、改、查

    Pandas DataFrame数据的增.删.改.查 https://blog.csdn.net/zhangchuang601/article/details/79583551 #删除列 df_2 = ...

  4. pandas外部数据的读取构造数据框-文本文件读取(一种utf-8中文编码乱码处理经验)

    上面一篇文章有记录pandas构造数据框的方式有二维数组,字典,嵌套的列表和元组等,本篇用于介绍通过外部数据读取的方式来构造数据框. python读取外部数据集的时候,这些数据集可能包含在文本文件(c ...

  5. 利用Python进行数据分析(12) pandas基础: 数据合并

    pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法c ...

  6. 【转载】使用Pandas对数据进行筛选和排序

    使用Pandas对数据进行筛选和排序 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas对数据进行筛选和排序 目录: sort() 对单列数据进行排序 对多列数据进行排序 获取金额最小前10项 ...

  7. 【转载】使用Pandas进行数据提取

    使用Pandas进行数据提取 本文转载自:蓝鲸的网站分析笔记 原文链接:使用python进行数据提取 目录 set_index() ix 按行提取信息 按列提取信息 按行与列提取信息 提取特定日期的信 ...

  8. 【转载】使用Pandas进行数据匹配

    使用Pandas进行数据匹配 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas进行数据匹配 目录 merge()介绍 inner模式匹配 lefg模式匹配 right模式匹配 outer模式 ...

  9. 【转载】使用Pandas创建数据透视表

    使用Pandas创建数据透视表 本文转载自:蓝鲸的网站分析笔记 原文链接:使用Pandas创建数据透视表 目录 pandas.pivot_table() 创建简单的数据透视表 增加一个行维度(inde ...

随机推荐

  1. Codeforces 163C(实数环上的差分计数)

    要点 都在注释里了 #include <cstdio> #include <cstring> #include <iostream> #include <al ...

  2. Codeforces Round 56-C. Mishka and the Last Exam(思维+贪心)

    time limit per test 2 seconds memory limit per test 256 megabytes input standard input output standa ...

  3. NOI2015程序自动分析 并查集

    有10^9个点,每次给出两个点的关系:权相等或不等,问最后能不能成立 感觉一开始在撕烤一个动态的问题,,,想写一个带权的并查集 结果发现静态询问,那就sb乱搞,懒得手写离散就直接map(卧槽好多细节忘 ...

  4. 熔断 降级(polly)

    熔断 降级(polly) https://www.cnblogs.com/szlblog/p/9300845.html1.熔断降级的概念: 熔断:我这里有一根长度一米的钢铁,钢铁的熔点1000度(假设 ...

  5. Corn 表达式

    CronTrigger CronTriggers往往比SimpleTrigger更有用,如果您需要基于日历的概念,而非SimpleTrigger完全指定的时间间隔,复发的发射工作的时间表.CronTr ...

  6. Linux下无图形界面安装Matlab

    1 下载R2015b_glnxa64.iso和破解文件Matlab+2015b+Linux64+Crack 百度网盘可以直接搜索资源.推荐一个可以多线程下载百度网盘超大文件的工具Aria2,均速1.3 ...

  7. Centos7.2内网环境安装MySQL5.7.24

    1.配置本地yum源 内网环境,首先需要配置本地yum源,以解决MySQL的依赖安装,具体参考该文:点击打开 2.查看服务器环境 uname -a 3.去官网下载MySQL安装包 MySQL官网网址: ...

  8. js基础拖拽效果

    function drag(ele) { const config = { mark: 0, x: 0, y: 0, left: ele.offsetLeft, top: ele.offsetTop, ...

  9. 面向对象程序设计第四单元总结(UML系列)

    2019面向对象程序设计第四单元总结 前言 ​ 本单元是面向对象程序设计课程的最后一个单元了,本单元是和UML模型相关,也就是说,我们需要正确理解UML模型的基础上,对构建出的UML模型进行解析,但是 ...

  10. 一个例子说明Jsp三大重要内置对象的生命周期

    此处Jsp的三大内置对象指:request,session以及application.他们共有的方法:setAttribute,getAttribute,方法名和方法作用都是相同的,但是作用范围不一样 ...