题目链接

Solution

Wa,我是真的被期望折服了,感觉这道题拿来练手正好.

DP的难度可做又巧妙...

我们定义:

\(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案.

\(g[i]\) 代表到第 \(i\) 此点击的 \(o\) 的期望长度.

然后看转移:

1.此时为 \(o\) ,那么我可以直接计算答案。

由于 \((x+1)^2=x^2+2x+1\) ,所以我们得到转移方程:

$$f[i]=f[i-1]+2*g[i-1]+1$$

同时由于此时 \(o\) 的长度已经增加,所以同时 \(g[i]=g[i-1]+1\).

2.此时为 \(x\),同样直接统计答案.

\(f[i]=f[i-1]\) , \(g[i]=0\).

3.此时为 \(?\) ,那么我们对于以上两种情况都有 \(0.5\) 的概率.

然后直接转移:

$$f[i]=0.5(f[i-1]+2g[i-1]+1+f[i-1])$$

$$g[i]=0.5*(g[i-1]+1)$$

然后最后面 \(f[n]\) 即为答案


Code

#include<bits/stdc++.h>
#define db double
using namespace std;
const int maxn=300008;
db f[maxn],g[maxn];
int n;
string ch;
int main()
{
cin>>n;
ch='*';
string s; cin>>s;
ch+=s;
for(int i=1;i<=n;i++)
{
if(ch[i]=='o')
{
f[i]=f[i-1]+2*g[i-1]+1;
g[i]=g[i-1]+1;
}
if(ch[i]=='x')
{
f[i]=f[i-1];
g[i]=0;
}
if(ch[i]=='?')
{
f[i]=0.5*(f[i-1]+2*g[i-1]+1+f[i-1]);
g[i]=0.5*(g[i-1]+1);
}
}
printf("%.4lf",f[n]);
}

[BZOJ4318] WJMZBMR打osu! / Easy (期望DP)的更多相关文章

  1. 洛谷P1365 WJMZBMR打osu! / Easy——期望DP

    题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...

  2. 【bzoj4318】【OSU!】期望dp——维护多个期望值递推

    [pixiv] https://www.pixiv.net/member_illust.php?mode=medium&illust_id=62369739 Description osu 是 ...

  3. WJMZBMR打osu! / Easy

    WJMZBMR打osu! / Easy 有一个由o,x,?组成的长度为n的序列,?等概率变为o,x,定义序列权值为连续o的长度o的平方之和,询问权值的期望, 解 注意到权值不是简单的累加关系,存在平方 ...

  4. luogu P1365 WJMZBMR打osu! / Easy(期望DP)

    题目背景 原 维护队列 参见P1903 题目描述 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有nnn次点击要做,成功了就是o,失败了就是 ...

  5. 2018.08.30 bzoj4318: OSU!(期望dp)

    传送门 简单期望dp. 感觉跟Easy差不多,就是把平方差量进阶成了立方差量,原本维护的是(x+1)2−x2" role="presentation" style=&qu ...

  6. 【BZOJ3450】Easy [期望DP]

    Easy Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...

  7. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  8. [Luogu1365] WJMZBMR打osu! / Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有 \(n\) 次点击要做,成功了就是o,失败了就是x,分数是按com ...

  9. 洛谷 P1365 WJMZBMR打osu! / Easy

    题目背景 原 维护队列 参见P1903 题目描述 某一天\(WJMZBMR\)在打\(osu~~~\)但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有\(n\)次点击要做,成功 ...

随机推荐

  1. [opencv] applyColorMap

    applyColorMap 功能 转化为热力图,因为热力图我们看的变化更加细微,在很多地方都用到了热力图. 最近在看CAM,所以记一记这个函数. 感觉还是很有用的. 代码 >>> i ...

  2. CornerStone使用跳坑总结

    Cornerstone是专门为Mac用户设计的Subversion(SVN)的控制,使版本控制更加透明.cornerstone根Xcode相比,能够更好的忽略文件,所以除了项目经理第一次初始化项目的时 ...

  3. Android layout的XML

    [注]此文是在学习andriod中的一些理解和总结,若有错望留言指教,谢谢 1 <RelativeLayout xmlns:android="http://schemas.androi ...

  4. javascript 完整知识点整理

    by 蔡舒啸 目录 一 5种基本类型 typeof 关键字 三种强制类型转换 日期 二 if语句for语句whiledo-whileswitch-case 比较运算符 逻辑运算符 if for语句 w ...

  5. 监测UITextField的变化

    监测UITextField的变化可以为UIControlEventEditingChanged事件添加target. 我们有时候会需要用到这个需求:输入框输入文本超过xx长度,不再允许输入其他内容! ...

  6. echarts事件中获取当前实例

    直接使用this即可

  7. CUB reduce errorinvalid configuration argument

    解决CUB reduce errorinvalid configuration argument问题 在写TensorFlow代码时遇到报错 CUB reduce errorinvalid confi ...

  8. rs485多主

    因复位时I/O口都输出高电平.如果把I/O口直接与RS-485接口芯片的驱动器使能端DE端相连,会在CPU复位其间DE为高,从而使本节点处于发送状态.如果此时总线上其它节点在发送数据,则此次数据传输将 ...

  9. poj-3009 curling2.0(搜索)

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26408   Accepted: 10546 Des ...

  10. HTTPS的请求与响应

    HTTP和HTTPS HTTP协议(HyperText Transfer Protocol,超文本传输协议):是一种发布和接收 HTML页面的方法. HTTPS(Hypertext Transfer ...