洛谷P3625 - [APIO2009]采油区域
Description
给出一个\(n\times m(n,m\leq1500)\)的矩阵,从中选出\(3\)个互不相交的\(k\times k\)方阵,使得被选出的数的和最大。
Solution
奇怪做法...
三个矩形分别在三个部分中,把矩形划分成三部分只有这六种。首先搞出\(s[i][j]\)表示以\((i,j)\)为右下角的\(k\times k\)方阵的和,然后搞出\(f_1[i][j]\)表示\((1,1)-(i,j)\)中\(s\)的最大值,\(f_2[i][j]\)表示\((1,m)-(i,j)\)中\(s\)的最大值,\(f_3[i][j]\)表示\((n,m)-(i,j)\)中\(s\)的最大值,\(f_4[i][j]\)表示\((n,1)-(i,j)\)中\(s\)的最大值。枚举横竖划分在哪就可以解决四种。
平行的那两种搞出行/列最大值然后瞎搞即可。
时间复杂度\(O(nm)\)。
Code
//[APIO2009]Oil
#include <cstdio>
const int N=2000;
inline int max(int x,int y) {return x>y?x:y;}
int n,m,k,a[N][N];
int pre[N][N],s[N][N],f1[N][N],f2[N][N],f3[N][N],f4[N][N],row[N],col[N];
int main()
{
scanf("%d%d%d",&n,&m,&k);
int ans;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
scanf("%d",&a[i][j]);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
pre[i][j]=pre[i-1][j]+pre[i][j-1]-pre[i-1][j-1]+a[i][j];
for(int i=k;i<=n;i++)
for(int j=k;j<=m;j++)
s[i][j]=pre[i][j]-pre[i-k][j]-pre[i][j-k]+pre[i-k][j-k];
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
f1[i][j]=max(s[i][j],max(f1[i-1][j],f1[i][j-1]));
for(int i=1;i<=n;i++)
for(int j=m;j>=1;j--)
f2[i][j]=max(s[i][j+k-1],max(f2[i-1][j],f2[i][j+1]));
for(int i=n;i>=1;i--)
for(int j=m;j>=1;j--)
f3[i][j]=max(s[i+k-1][j+k-1],max(f3[i+1][j],f3[i][j+1]));
for(int i=n;i>=1;i--)
for(int j=1;j<=m;j++)
f4[i][j]=max(s[i+k-1][j],max(f4[i+1][j],f4[i][j-1]));
for(int i=k;i<=n-k;i++)
for(int j=k;j<=m-k;j++)
{
ans=max(ans,f1[i][j]+f2[i][j+1]+f3[i+1][1]); //┴
ans=max(ans,f2[i][j+1]+f3[i+1][j+1]+f4[1][j]); //├
ans=max(ans,f3[i+1][j+1]+f4[i+1][j]+f1[i][m]); //┬
ans=max(ans,f4[i+1][j]+f1[i][j]+f2[n][j+1]); //┤
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
row[i]=max(row[i],s[i][j]),col[j]=max(col[j],s[i][j]);
for(int i=k;i<=n-k-k;i++)
for(int j=i+k,mid=row[j];j<=n-k;j++,mid=max(mid,row[j]))
ans=max(ans,f1[i][m]+mid+f3[j+1][1]);
for(int i=k;i<=n-k-k;i++)
for(int j=i+k,mid=col[j];j<=n-k;j++,mid=max(mid,col[j]))
ans=max(ans,f1[n][i]+mid+f3[1][j+1]);
printf("%d\n",ans);
return 0;
}
P.S.
写的我好难受...
洛谷P3625 - [APIO2009]采油区域的更多相关文章
- [SOJ #686]抢救(2019-11-7考试)/[洛谷P3625][APIO2009]采油区域
题目大意 有一个\(n\times m\)的网格,\((x,y)\)权值为\(a_{x,y}\),要求从中选取三个不相交的\(k\times k\)的正方形使得它们权值最大.\(n,m,k\leqsl ...
- 洛谷 P3625 [APIO2009]采油区域【枚举】
参考:https://blog.csdn.net/FAreStorm/article/details/49200383 没有技术含量但是难想难写,枚举情况图详见参考blog懒得画了 bzoj蜜汁TTT ...
- [P3625][APIO2009]采油区域 (前缀和)
这道题用二维前缀和可以做 难度还不算高,细节需要注意 调试了很久…… 主要是细节太多了 #include<bits/stdc++.h> using namespace std; #defi ...
- bzoj1177&p3625 [APIO2009]采油区域p[大力讨论]
我好菜菜啊. 给定矩形,从中选出三个边长K的正方形互不重叠,使得覆盖到的数总和最大. 想的时候往dp上钻去了..结果一开始想了一个错的dp,像这样 /************************* ...
- BZOJ1178或洛谷3626 [APIO2009]会议中心
BZOJ原题链接 洛谷原题链接 第一个问题是经典的最多不相交区间问题,用贪心即可解决. 主要问题是第二个,求最小字典序的方案. 我们可以尝试从\(1\to n\)扫一遍所有区间,按顺序对每一个不会使答 ...
- BZOJ1179或洛谷3672 [APIO2009]抢掠计划
BZOJ原题链接 洛谷原题链接 在一个强连通分量里的\(ATM\)机显然都可被抢,所以先用\(tarjan\)找强连通分量并缩点,在缩点的后的\(DAG\)上跑最长路,然后扫一遍酒吧记录答案即可. # ...
- 【题解】洛谷P3627 [APIO2009]抢掠计划(缩点+SPFA)
洛谷P3627:https://www.luogu.org/problemnew/show/P3627 思路 由于有强连通分量 所以我们可以想到先把整个图缩点 缩点完之后再建一次图 把点权改为边权 并 ...
- [APIO2009]采油区域
题目描述 Siruseri 政府决定将石油资源丰富的 Navalur 省的土地拍卖给私人承包商以 建立油井.被拍卖的整块土地为一个矩形区域,被划分为 M×N 个小块. Siruseri 地质调查局有关 ...
- 洛谷 P3627 [APIO2009]抢掠计划
这题一看就是缩点,但是缩完点怎么办呢?首先我们把所有的包含酒吧的缩点找出来,打上标记,然后建立一张新图, 每个缩点上的点权就是他所包含的所有点的点权和.但是建图的时候要注意,每一对缩点之间可能有多条边 ...
随机推荐
- nginx 的反向代理及缓存功能
上游服务器的设置 server { #监听的IP及端口 listen 127.0.0.1:8080; #虚拟主机对硬解析的主机名 #server_name localhost; #charset ko ...
- 2406: C语言习题 求n阶勒让德多项式
2406: C语言习题 求n阶勒让德多项式 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 961 Solved: 570[Submit][Status ...
- 主成分分析法(PCA)答疑
问:为什么要去均值? 1.我认为归一化的表述并不太准确,按统计的一般说法,叫标准化.数据的标准化过程是减去均值并除以标准差.而归一化仅包含除以标准差的意思或者类似做法.2.做标准化的原因是:减去均值等 ...
- C#:CodeSmith根据数据库中的表创建C#数据模型Model + 因为没有钱买正版,所以附加自己写的小代码
对于C#面向对象的思想,我们习惯于将数据库中的表创建对应的数据模型: 但假如数据表很多时,我们手动增加模型类会显得很浪费时间: 这个时候有些人会用微软提供的EntityFrameWork,这个框架很强 ...
- js函数节流和函数防抖
概念解释 函数节流: 频繁触发,但只在特定的时间内才执行一次代码 函数防抖: 频繁触发,但只在特定的时间内没有触发执行条件才执行一次代码 函数节流 函数节流应用的实际场景,多数在监听页面元素滚动事件的 ...
- Caesars Cipher-freecodecamp算法题目
Caesars Cipher(凯撒密码.移位密码) 要求 字母会按照指定的数量来做移位. 一个常见的案例就是ROT13密码,字母会移位13个位置.由'A' ↔ 'N', 'B' ↔ 'O',以此类推. ...
- Codevs1081 线段树练习 2
题目描述 Description 给你N个数,有两种操作 1:给区间[a,b]的所有数都增加X 2:询问第i个数是什么? 输入描述 Input Description 第一行一个正整数n,接下来n行n ...
- XML 转 fastJSON
import java.util.List; import org.dom4j.Attribute; import org.dom4j.Document; import org.dom4j.Doc ...
- linux系统防火墙关闭
临时关闭防火墙 #systemctl stop firewalld 永久关闭服务端防火墙 #systemctl disabled firewalld getenforce 查询状态 临时 ...
- Python3学习了解日记
# 单行注释 ''' 多行注释 ''' """ 这个也是多行注释 """ ''' 声明变量 Python 中的变量不需要声明.每个变量在使用 ...