https://andreynikolaev.wordpress.com/2010/10/28/appetizer-for-dtrace/

Appetizer for DTrace

Filed under: DTrace,Latch — andreynikolaev @ 3:33 pm 

To discover how the Oracle latch works, we need the tool. Oracle Wait Interface allows us to explore the waits only. Oracle X$/V$ tables instrument the latch acquisition and give us performance counters. To see how latch works through time and to observe short duration events, we need something like stroboscope in physics. Likely such tool exists in Oracle Solaris. The DTrace, Solaris 10 Dynamic Tracing framework!

Here I would like to give brief, Oracle DBA inclined into to some of DTrace topics. Tanel PoderJames MorleDough Burnswere used the DTrace for performance diagnostics for years. But it is still not popular as should be in our DBA community. One of the problems is another “language”. The best DTrace presentations talk about “probes”, “actions”, unfamiliar Solaris kernel structures, etc… Begging pardon to the DTrace inventors, I will use more database-like terminology here.

I will not even try to touch the most popular DTrace usage. Anyone who’s interested in this revolutionary technology, should read DTrace introductionDTrace user guide,the upcoming DTrace book and DTrace communitymaterials.

DTrace is event-driven instrumentation of Solaris kernel and user applications. This is the key point. No application change is needed to use DTrace. This is very similar to triggers in Oracle database. You define the probe (trigger ) to fire on event, and write the action (body) to execute. I will use this analogy in this post.

probe is a point of instrumentation made available by a provider. A provider has analogy in Oracle trigger type (system/user triggers, DML, DDL, etc…). Officially, the provider represents a methodology for instrumenting the system.

Popular Solaris providers are pid,syscall, sysinfo, … As of now (11.2.0.2), we are still waiting for Oracle specific providers to integrate Oracle Server and Oracle DTrace. But we can do a lot with a generic pid provider, which allows to set triggers on any function call in user application. My goal is to see the latch operations on-the-fly.

The DTrace describes the triggering probe in a four field format: provider:module:function:name. If one need to set trigger inside the oracle process with Solaris spid 16444, to fire on entry to function kslgetl (get exclusive latch), the probe description will be pid16444:oracle:kslgetl:entry

Surprisingly this is enough to start use the DTrace with Oracle. Suppose, I would like to see latch acquisitions by MMON process . In my database the MMON process currently has spid 16444. Ask your Solaris SysAdmin for dtrace_userprivilege and type:

$/usr/sbin/dtrace -n 'pid16444:oracle:kslgetl:entry'
dtrace: description 'pid16444:oracle:kslgetl:entry' matched 1 probe
CPU ID FUNCTION:NAME
1 67480 kslgetl:entry
1 67480 kslgetl:entry
0 67480 kslgetl:entry

<ctrl-C>

This simple DTrace one-liner traces calls of kslgetl() function and shows how the process migrates between CPUs.

How it works? Unlike standard tracing tools, DTrace works in Solaris kernel. When I activated this probe, dtrace set trigger at the entry to kslgetl function. When oracle process entered this function, the execution went to Solaris kernel and the DTrace filled buffers with the data. The dtrace program printed out these buffers.

Let us compare the DTrace and obsoleted Oracle Trace. Both were event driven. Otrace tried to catch all the evens in instance, the DTrace catch only what you asked for. Otrace allowed to set filters, in the DTrace you write the program. Otrace was fully userland, DTrace works in the OS kernel.

Kernel based tracing is much more stable and have less overhead then userland. DTrace sees all the system activity and can take into account the ‘unaccounted for’ time associated with kernel calls, scheduling, etc.

Actions (trigger bodies!) are what happen when a probe is hit. Actions are fully programmable using language, which will be familiar to anybody who ever used C and awk. Action code enclosed in curly brackets {} and could use arguments of function call as arg0, arg1, etc….

Naturally, the next step in our DTrace latch tracing is to see the latch function arguments. It is easy to write such a script (ksl_args.d). Remember that Oracle acquires exclusive latches using kslgetl(laddr, wait, why, where), and shared latches using kslgetsl(laddr, wait, why, where, rs) (ksl_get_shared_latch() in 11g):

#!/usr/sbin/dtrace -Zs
#pragma D option quiet
pid$target::kslgetl:entry
{
printf("%s(0x%X,wait=%d,why=0x%X,whr=%d)\n",probefunc,arg0,arg1,arg2,arg3);
}
 
pid$target::kslgetsl:entry,
pid$target::ksl_get_shared_latch:entry
{
printf("%s(0x%X,wait=%d,why=0x%X,whr=%d,rs=%d)\n",probefunc,arg0, arg1,arg2,arg3,arg4);
}
pid$target::kslfre:entry
{
printf(" %s(0x%X)\n",probefunc,arg0);
}

The script probes (triggers) will fire on each entry to latch acquisition functions. Printf()’s inside the trigger bodies (actions) will print out arguments of these functions to the dtrace kernel buffers. $target macro will be replaced at runtime by spid number from -p script oprion. And this is the output:


$ ./ksl_args.d -p 16444
kslgetl(0x38000CC98,wait=1,why=0x0,whr=175)
kslfre(0x38000CC98)
ksl_get_shared_latch(0x38DE6DD00,wait=1,why=0x38DE6DCB8,whr=290,rs=16)
kslfre(0x38DE6DD00)
kslgetl(0x38BE4C328,wait=1,why=0x0,whr=3487)
kslfre(0x38BE4C328)
kslgetl(0x38BE4C328,wait=1,why=0x0,whr=3510)
...

One can focus on the particular latch using predicate (WHEN clause !). Predicate takes the form of / … / just before action code. The probe will fire only when the predicate evaluates to true.
Look at my test Oracle instance suffered from “transaction allocation” latch contention.

select addr,latch#,name,gets,misses,sleeps,spin_gets,wait_time from v$latch_parent
where name='transaction allocation'

ADDR LATCH# NAME GETS MISSES SLEEPS SPIN_GETS WAIT_TIME
50010AEC 180 transaction allocation 520710921 387182198 74543 387117330 380364770

To see what happens with this latch I used the script:

#!/usr/sbin/dtrace -Zs
#pragma D option quiet
pid$target::kslgetl:entry
/ arg0 == 0x50010AEC /
{
printf("%s(0x%X,wait=%d,why=0x%X,whr=%d)\n",probefunc,arg0,arg1,arg2,arg3);
}
 
pid$target::kslfre:entry
/ arg0 == 0x50010AEC /
{
printf(" %s(0x%X)\n",probefunc,arg0);
}

...
kslgetl(0x50010AEC,wait=1,why=0x0,whr=2098)
kslfre(0x50010AEC)
...

Latch “where“=2098 mean “ktcxbr: parent” in x$ksllw. Oracle acquire parent “transaction allocation” latch at this “where” during select from v$transaction. Concurrent select from this fixed view is indeed the root cause of latch contention.

And finally I would like to show the latch in memoryitself. No problem. On entry to kslgetl the arg0 is the latch address. I will check this location on entry and return from latch functions. The only thing is to remember that DTrace probe acts in kernel address space. You need to copy the latch value from user address space into kernel buffer using copyin(user_address,size) DTrace function:

#!/usr/sbin/dtrace -Zs
#pragma D option quiet
 
pid$target::kslgetl:entry,
pid$target::kslfre:entry
/ arg0 == 0x50010AEC /
{
laddress = arg0;                           /* save laddress */
latch= *(uint32_t *)copyin(laddress, 4);   /* copy latch value from user space*/
printf("%s(0x%X...) \tlatch=0x%X (entry),",probefunc,arg0,latch);
}
 
pid$target::kslgetl:return,
pid$target::kslfre:return
/ laddress /
{
latch= *(uint32_t *)copyin(laddress, 4);   /* copy latch value from user space*/
printf(" 0x%X (return)\n",latch);
laddress =0;
}

...
kslgetl(0x50010AEC...) latch=0x00 (entry), 0xFF (return)
kslfre(0x50010AEC...) latch=0xFF (entry), 0x00 (return)
...

oracle function dtrace的更多相关文章

  1. oracle function学习1

    oracle function学习基层: 函数就是一个有返回值的过程.  首先 知道oracle 使用限制:      函数调用限制: 1. SQL语句中只能调用存储函数(服务器端),而不能调用客户端 ...

  2. MySQL 5.6.20-4 and Oracle Linux DTrace

    https://blogs.oracle.com/wim/entry/mysql_5_6_20_4?utm_source=tuicool&utm_medium=referral By WimC ...

  3. Oracle function real_st_astext,解决ArcSDE中st_astext函数返回字符串结构异常问题

    项目过程中发现在Oracle中调用ArcSDE的st_astext函数返回ST_Geometry类型字段的WKT文本有时空间类型前缀没有返回,例如一个点的经度为113.4,纬度为30.6,调用st_a ...

  4. Oracle Function:TO_CHAR

    Description The Oracle/PLSQL TO_CHAR function converts a number or date to a string.将数字转换为日期或字符串 Syn ...

  5. Oracle Function:COUNT

    Description The Oracle/PLSQL COUNT function returns the count of an expression. The COUNT(*) functio ...

  6. Oracle Function: NVL

    Description The Oracle/PLSQL NVL function lets you substitute a value when a null value is encounter ...

  7. Oracle Function

    Oracle Sql 中常用函数 小写字母转大写字母:upper(); 大写字母转小写字母:lower(); 字符串截取函数:substr(str,a,b); a,b为整数,str为字符串, 截取字符 ...

  8. Oracle function注释

    create or replace function fn_bookid_get_by_chapterid(inintChapterId in integer, outvarBookId out va ...

  9. Oracle function和procedure

    1.返回值的区别 函数有1个返回值,而存储过程是通过参数返回的,可以有多个或者没有 2. 调用的区别,函数可以在查询语句中直接调用,而存储过程必须单独调用. 函数:一般情况下是用来计算并返回一个计算结 ...

随机推荐

  1. 1507: [NOI2003]Editor(块状链表)

    1507: [NOI2003]Editor Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4157  Solved: 1677[Submit][Stat ...

  2. 03008_ServletContext

    1.什么是ServletContext? (1)ServletContext代表是一个web应用的环境(上下文)对象,ServletContext对象    内部封装是该web应用的信息,Servle ...

  3. day01 项目

    项目名称: 编写登陆接口 项目需求:     1 输入用户名密码     2 认证成功后显示欢迎信息     3 输错3次之后锁定,包括下次运行此程序也要锁定,涉及到持久化的问题只能用python 自 ...

  4. dubbo基础文档

    随着互联网的发展,网站应用的规模不断扩大,常规的垂直应用架构已无法应对,分布式服务架构以及流动计算架构势在必行,亟需一个治理系统确保架构有条不紊的演进. 单一应用架构 当网站流量很小时,只需一个应用, ...

  5. tar.xz结尾的文件的解压缩方法

    例如: codeblocks-13.12-1_i386.debian.stable.tar 这个压缩包也是两层压缩,外面是xz压缩方式,里层是tar压缩方式. 解压缩方法: $xz -d ***.ta ...

  6. python - 数据驱动测试 - ddt

    # -*- coding:utf-8 -*- ''' @project: jiaxy @author: Jimmy @file: study_ddt.py @ide: PyCharm Communit ...

  7. POJ 1145 Tree Summing

    Tree Summing Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 7698   Accepted: 1737 Desc ...

  8. JDBC 学习笔记(六)—— PreparedStatement

    1. 引入 PreparedStatement PreparedStatement 通过 Connection.createPreparedStatement(String sql) 方法创建,主要用 ...

  9. Welcome-to-Swift-03字符串和字符(Strings and Characters)

    String是例如“hello, world“”,“海贼王” 这样的有序的Character(字符)类型的值的集合,通过String类型来表示. Swift 的String和Character类型提供 ...

  10. kb-07-RMQ线段树--07(动态规划)

    RMQ是一类解决区间最值查询的算法的通称:.一共有四类:在代码中有说明: 下面是ST算法,就是动态规划做法: 来看一下ST算法是怎么实现的(以最大值为例): 首先是预处理,用一个DP解决.设a是要求区 ...