http://hbase.apache.org/acid-semantics.html

Apache HBase (TM) is not an ACID compliant database. However, it does guarantee certain specific properties.

This specification enumerates the ACID properties of HBase.

Definitions

For the sake of common vocabulary, we define the following terms:

Atomicity
an operation is atomic if it either completes entirely or not at all
Consistency
all actions cause the table to transition from one valid state directly to another (eg a row will not disappear during an update, etc)
Isolation
an operation is isolated if it appears to complete independently of any other concurrent transaction
Durability
any update that reports "successful" to the client will not be lost
Visibility
an update is considered visible if any subsequent read will see the update as having been committed

The terms must and may are used as specified by RFC 2119. In short, the word "must" implies that, if some case exists where the statement is not true, it is a bug. The word "may" implies that, even if the guarantee is provided in a current release, users should not rely on it.

APIs to consider

  • Read APIs

    • get
    • scan
  • Write APIs
    • put
    • batch put
    • delete
  • Combination (read-modify-write) APIs
    • incrementColumnValue
    • checkAndPut

Guarantees Provided

Atomicity

  1. All mutations are atomic within a row. Any put will either wholly succeed or wholly fail.[3]
    1. An operation that returns a "success" code has completely succeeded.
    2. An operation that returns a "failure" code has completely failed.
    3. An operation that times out may have succeeded and may have failed. However, it will not have partially succeeded or failed.
  2. This is true even if the mutation crosses multiple column families within a row.
  3. APIs that mutate several rows will _not_ be atomic across the multiple rows. For example, a multiput that operates on rows 'a','b', and 'c' may return having mutated some but not all of the rows. In such cases, these APIs will return a list of success codes, each of which may be succeeded, failed, or timed out as described above.
  4. The checkAndPut API happens atomically like the typical compareAndSet (CAS) operation found in many hardware architectures.
  5. The order of mutations is seen to happen in a well-defined order for each row, with no interleaving. For example, if one writer issues the mutation "a=1,b=1,c=1" and another writer issues the mutation "a=2,b=2,c=2", the row must either be "a=1,b=1,c=1" or "a=2,b=2,c=2" and must not be something like "a=1,b=2,c=1".
    1. Please note that this is not true _across rows_ for multirow batch mutations.

Consistency and Isolation

  1. All rows returned via any access API will consist of a complete row that existed at some point in the table's history.
  2. This is true across column families - i.e a get of a full row that occurs concurrent with some mutations 1,2,3,4,5 will return a complete row that existed at some point in time between mutation i and i+1 for some i between 1 and 5.
  3. The state of a row will only move forward through the history of edits to it.

Consistency of Scans

A scan is not a consistent view of a table. Scans do not exhibit snapshot isolation.

Rather, scans have the following properties:

  1. Any row returned by the scan will be a consistent view (i.e. that version of the complete row existed at some point in time) [1]
  2. A scan will always reflect a view of the data at least as new as the beginning of the scan. This satisfies the visibility guarantees enumerated below.
    1. For example, if client A writes data X and then communicates via a side channel to client B, any scans started by client B will contain data at least as new as X.
    2. A scan _must_ reflect all mutations committed prior to the construction of the scanner, and _may_ reflect some mutations committed subsequent to the construction of the scanner.
    3. Scans must include all data written prior to the scan (except in the case where data is subsequently mutated, in which case it _may_ reflect the mutation)

Those familiar with relational databases will recognize this isolation level as "read committed".

Please note that the guarantees listed above regarding scanner consistency are referring to "transaction commit time", not the "timestamp" field of each cell. That is to say, a scanner started at time t may see edits with a timestamp value greater than t, if those edits were committed with a "forward dated" timestamp before the scanner was constructed.

Visibility

  1. When a client receives a "success" response for any mutation, that mutation is immediately visible to both that client and any client with whom it later communicates through side channels. [3]
  2. A row must never exhibit so-called "time-travel" properties. That is to say, if a series of mutations moves a row sequentially through a series of states, any sequence of concurrent reads will return a subsequence of those states.
    1. For example, if a row's cells are mutated using the "incrementColumnValue" API, a client must never see the value of any cell decrease.
    2. This is true regardless of which read API is used to read back the mutation.
  3. Any version of a cell that has been returned to a read operation is guaranteed to be durably stored.

Durability

  1. All visible data is also durable data. That is to say, a read will never return data that has not been made durable on disk[2]
  2. Any operation that returns a "success" code (eg does not throw an exception) will be made durable.[3]
  3. Any operation that returns a "failure" code will not be made durable (subject to the Atomicity guarantees above)
  4. All reasonable failure scenarios will not affect any of the guarantees of this document.

Tunability

All of the above guarantees must be possible within Apache HBase. For users who would like to trade off some guarantees for performance, HBase may offer several tuning options. For example:

  • Visibility may be tuned on a per-read basis to allow stale reads or time travel.
  • Durability may be tuned to only flush data to disk on a periodic basis

More Information

For more information, see the client architecture or data model sections in the Apache HBase Reference Guide.

Footnotes

[1] A consistent view is not guaranteed intra-row scanning -- i.e. fetching a portion of a row in one RPC then going back to fetch another portion of the row in a subsequent RPC. Intra-row scanning happens when you set a limit on how many values to return per Scan#next (See Scan#setBatch(int)).

[2] In the context of Apache HBase, "durably on disk" implies an hflush() call on the transaction log. This does not actually imply an fsync() to magnetic media, but rather just that the data has been written to the OS cache on all replicas of the log. In the case of a full datacenter power loss, it is possible that the edits are not truly durable.

[3] Puts will either wholly succeed or wholly fail, provided that they are actually sent to the RegionServer. If the writebuffer is used, Puts will not be sent until the writebuffer is filled or it is explicitly flushed.

the ACID properties of HBase的更多相关文章

  1. [翻译]HBase 中的 ACID

    同前面翻译的一篇关联的,同作者的另一篇:ACID in HBase 这一篇不是单纯地描述一个问题,而是以 ACID 为主题,介绍了其在 HBase 中各个部分的体现及实现. ACID,即:原子性(At ...

  2. HBase事务

    众所周知,ACID是指原子性(Atomicity),一致性(Consistency),隔离性(Isolation)和持久性(Durability). HBase对同一行数据的操作提供ACID保证.HB ...

  3. Hbase基础篇

    namespace:命名空间的作用是把多个属于相同业务领域的表分成一个组.一个表可以自由选择是否有命名空间,如果创建表的时候加上了命名空间后,这个表名字就成为了:<NameSpace> : ...

  4. hbase+hadoop+hdfs集群搭建 集成spring

    序言 最近公司一个汽车项目想用hbase做存储,然后就有了这篇文字,来,来,来, 带你一起征服hbase,并推荐一本书<hbase权威指南> 这是一本极好的hbase入门书籍,我花了一个晚 ...

  5. 深入理解大数据之——事务及其ACID特性

    目录 事务简介 事物的定义 事务的目的 事务的状态 事务的ACID属性 ACID简介 原子性(Atomicity) 一致性(Consistency) 隔离性(Isolation) 持久性(Durabi ...

  6. MySQL vs. MongoDB: Choosing a Data Management Solution

    原文地址:http://www.javacodegeeks.com/2015/07/mysql-vs-mongodb.html 1. Introduction It would be fair to ...

  7. 【Python之路】特别篇--Redis

    NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库 随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发 ...

  8. infoq - neo4j graph db

    My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introd ...

  9. MySQL binlog 组提交与 XA(两阶段提交)

    1. XA-2PC (two phase commit, 两阶段提交 ) XA是由X/Open组织提出的分布式事务的规范(X代表transaction; A代表accordant?).XA规范主要定义 ...

随机推荐

  1. es6总结(四)--对象

  2. ListView+EditText使用遇到的坑

    最近项目中某功能需要ListView嵌套EditText来实现,使用过程中遇到一些问题: 1.点击弹出编辑框,edittext会失去焦点. 解决焦点丢失的问题 解决思路:软键盘弹出的时候会重新绘制界面 ...

  3. Codeforces 333E Summer Earnings(bitset)

    题目链接 Summer Earnings 类似MST_Kruskal的做法,连边后sort. 然后对于每条边,依次处理下来,当发现存在三角形时即停止.(具体细节见代码) 答案即为发现三角形时当前所在边 ...

  4. Spring Cloud系列文,Feign整合Ribbon和Hysrix

    在本博客之前的Spring Cloud系列里,我们讲述了Feign的基本用法,这里我们将讲述下Feign整合Ribbon实现负载均衡以及整合Hystrix实现断路保护效果的方式. 1 准备Eureka ...

  5. ubuntu下某些文件目录

    1.#include <stdio.h> 2.#include <stdlib.h> stdio.h和stdlib.h的路径:/usr/include

  6. html的诸多标签

    1.p和br标签 p表示段落,默认段落之间是有间隔的! br是换行 hr是一条水平线 2.a标签,超链接 <a href="http://www.baidu.com" tar ...

  7. Ural 1780 Gray Code 乱搞暴力

    原题链接:http://acm.timus.ru/problem.aspx?space=1&num=1780 1780. Gray Code Time limit: 0.5 secondMem ...

  8. Java中没有C#的out关键字,但可以通过数组实现类似的效果

    其实传递的就是数组的指针,里面的每一项的值还是那块内存,所以能直接操作里面的值.如果单纯传指定的值,那么里面操作的就是新的一块内存块. 用数组实现的效果如下: class B{ String cnt= ...

  9. 邁向IT專家成功之路的三十則鐵律 鐵律二十五:IT人屈辱之道-十倍奉還

    現代人普遍火氣都很大,與人爭論時只要有一點點感到屈辱,便會開始大聲反擊,甚至於暴力相向.至於企業中的人事相鬥,則是典型的來個明爭暗鬥,直到成為老闆眼中的紅人,在逐漸掌握了權力之後再來個內部大清洗,不久 ...

  10. 每天进步一点点—SQL优化

    一.           SQL优化 1.   通过show status 命令了解各种SQL的运行频率 mysql>show status like 'Com_%'; +----------- ...