Codeforces Round #260 (Div. 2)C. Boredom(dp)
1 second
256 megabytes
standard input
standard output
Alex doesn't like boredom. That's why whenever he gets bored, he comes up with games. One long winter evening he came up with a game and decided to play it.
Given a sequence a consisting of n integers.
The player can make several steps. In a single step he can choose an element of the sequence (let's denote it ak)
and delete it, at that all elements equal to ak + 1 and ak - 1 also
must be deleted from the sequence. That step brings ak points
to the player.
Alex is a perfectionist, so he decided to get as many points as possible. Help him.
The first line contains integer n (1 ≤ n ≤ 105)
that shows how many numbers are in Alex's sequence.
The second line contains n integers a1, a2,
..., an (1 ≤ ai ≤ 105).
Print a single integer — the maximum number of points that Alex can earn.
- 2
- 1 2
- 2
- 3
- 1 2 3
- 4
- 9
- 1 2 1 3 2 2 2 2 3
- 10
Consider the third test example. At first step we need to choose any element equal to 2. After that step our sequence looks like this [2, 2, 2, 2].
Then we do 4 steps, on each step we choose any element equals to 2.
In total we earn 10 points.
给出n个数,每次能够选择消除一个值为ai的数,那么全部ai-1。ai+1的数也会被消掉,同一时候会获得值ai,问最多能够获得多少?
看完题就可想到这应该是一个dp问题,首先,哈希一下,存下每一个数的个数放在p中,消除一个数i,会获得p[i]*i的值(由于能够消除p[i]次),假设从0的位置開始向右消去,那么,消除数i时,i-1可能选择了消除,也可能没有。假设消除了i-1,那么i值就已经不存在,dp[i] = dp[i-1]。假设没有被消除。那么dp[i] = dp[i-2]+ p[i]*i。
那么初始的dp[0] = 0 ; dp[1] = p[1] ;得到了公式 dp[i] = max(dp[i-1],dp[i-2]+p[i]*i).
- #include <cstdio>
- #include <cstring>
- #include <algorithm>
- #define LL __int64
- using namespace std;
- LL p[110000] , dp[110000] ;
- int main()
- {
- LL i , n , x , maxn = -1;
- memset(p,0,sizeof(p));
- memset(dp,0,sizeof(dp));
- scanf("%I64d", &n);
- for(i = 1 ; i <= n ; i++)
- {
- scanf("%I64d", &x);
- if(x > maxn)
- maxn = x ;
- p[x]++ ;
- }
- dp[1] = p[1] ;
- for(i = 2 ; i <= maxn ; i++)
- {
- dp[i] = max( dp[i-1],dp[i-2]+p[i]*i );
- }
- printf("%I64d\n", dp[maxn]);
- return 0;
- }
Codeforces Round #260 (Div. 2)C. Boredom(dp)的更多相关文章
- Codeforces Round #260 (Div. 1) A. Boredom (简单dp)
题目链接:http://codeforces.com/problemset/problem/455/A 给你n个数,要是其中取一个大小为x的数,那x+1和x-1都不能取了,问你最后取完最大的和是多少. ...
- Codeforces Round #658 (Div. 2) D. Unmerge(dp)
题目链接:https://codeforces.com/contest/1382/problem/D 题意 给出一个大小为 $2n$ 的排列,判断能否找到两个长为 $n$ 的子序列,使得二者归并排序后 ...
- Codeforces Round #471 (Div. 2) F. Heaps(dp)
题意 给定一棵以 \(1\) 号点为根的树.若满足以下条件,则认为节点 \(p\) 处有一个 \(k\) 叉高度为 \(m\) 的堆: 若 \(m = 1\) ,则 \(p\) 本身就是一个 \(k\ ...
- 【Codeforces】Codeforces Round #374 (Div. 2) -- C. Journey (DP)
C. Journey time limit per test3 seconds memory limit per test256 megabytes inputstandard input outpu ...
- Codeforces Round #652 (Div. 2) D. TediousLee(dp)
题目链接:https://codeforces.com/contest/1369/problem/D 题意 最初有一个结点,衍生规则如下: 如果结点 $u$ 没有子结点,添加 $1$ 个子结点 如果结 ...
- Codeforces Round #247 (Div. 2) C. k-Tree (dp)
题目链接 自己的dp, 不是很好,这道dp题是 完全自己做出来的,完全没看题解,还是有点进步,虽然这个dp题比较简单. 题意:一个k叉树, 每一个对应权值1-k, 问最后相加权值为n, 且最大值至少为 ...
- Codeforces Round #165 (Div. 1) Greenhouse Effect(DP)
Greenhouse Effect time limit per test 2 seconds memory limit per test 256 megabytes input standard i ...
- Codeforces Round #119 (Div. 2) Cut Ribbon(DP)
Cut Ribbon time limit per test 1 second memory limit per test 256 megabytes input standard input out ...
- DP Codeforces Round #260 (Div. 1) A. Boredom
题目传送门 /* 题意:选择a[k]然后a[k]-1和a[k]+1的全部删除,得到点数a[k],问最大点数 DP:状态转移方程:dp[i] = max (dp[i-1], dp[i-2] + (ll) ...
随机推荐
- [转]WIBKIT技术资料
WebKit结构和流程分析 http://inedx.blog.hexun.com/28830354_d.html webkit架构 http://inedx.blog.hexun.com/28795 ...
- hdoj 3065 病毒侵袭持续中(AC自动机)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=3065 思路分析:问题需要模式匹配多个模式串,需要注意的是模式串会包含和重叠,需要对AC自动机的匹配过 ...
- 飘逸的python - 一个最简单的服务器
python拥有这种单独起一个服务器监听端口的能力,用标准库的wsgiref就行. from wsgiref.simple_server import make_server def simple_a ...
- ExtJs 4 的filefield上传后 返回值success接受不正常
问题解决了,我修改了返回类型为setContentType("text/html")可以正确解析了,感到很奇怪,其他的地方使用setContentType("applic ...
- JavaScript基础知识----基本语法
JavaScript 语句 JavaScript 语句向浏览器发出的命令.语句的作用是告诉浏览器该做什么. 分号 ; 分号用于分隔 JavaScript 语句. 通常我们在每条可执行的语句结尾添加分号 ...
- HTML5 总结-拖放-3
HTML5 拖放 拖放(Drag 和 drop)是 HTML5 标准的组成部分. 拖放 拖放是一种常见的特性,即抓取对象以后拖到另一个位置. 在 HTML5 中,拖放是标准的一部分,任何元素都能够拖放 ...
- jQuery File Upload blueimp with struts2 简单试用
Official Site的话随便搜索就可以去了 另外新版PHP似乎都有问题 虽然图片都可以上传 但是response报错 我下载的是8.8.7木有问题 但是8.8.7版本结合修改main. ...
- 图的DFS递归和非递归
看以前写的文章: 图的BFS:http://www.cnblogs.com/youxin/p/3284016.html DFS:http://www.cnblogs.com/youxin/archiv ...
- MFC技术内幕系列之(四)---MFC消息映射与消息传递内幕
//////////////////////////////////////////////////////////////////////////////////// ...
- Card Game Cheater(贪心+二分匹配)
Card Game Cheater Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others ...