Problem Description

For hundreds of years Fermat’s Last Theorem, which stated simply that for n > 2 there exist no integers a, b, c > 1 such that a^n = b^n + c^n, has remained elusively unproven. (A recent proof is believed to be correct, though it is still undergoing scrutiny.) It is possible, however, to find integers greater than 1 that satisfy the “perfect cube” equation a^3 = b^3 + c^3 + d^3 (e.g. a quick calculation will show that the equation 12^3 = 6^3 + 8^3 + 10^3 is indeed true). This problem requires that you write a program to find all sets of numbers {a, b, c, d} which satisfy this equation for a <= 200.

Output

The output should be listed as shown below, one perfect cube per line, in non-decreasing order of a (i.e. the lines should be sorted by their a values). The values of b, c, and d should also be listed in non-decreasing order on the line itself. There do exist several values of a which can be produced from multiple distinct sets of b, c, and d triples. In these cases, the triples with the smaller b values should be listed first.

The first part of the output is shown here:

Cube = 6, Triple = (3,4,5)

Cube = 12, Triple = (6,8,10)

Cube = 18, Triple = (2,12,16)

Cube = 18, Triple = (9,12,15)

Cube = 19, Triple = (3,10,18)

Cube = 20, Triple = (7,14,17)

Cube = 24, Triple = (12,16,20)

Note: The programmer will need to be concerned with an efficient implementation. The official time limit for this problem is 2 minutes, and it is indeed possible to write a solution to this problem which executes in under 2 minutes on a 33 MHz 80386 machine. Due to the distributed nature of the contest in this region, judges have been instructed to make the official time limit at their site the greater of 2 minutes or twice the time taken by the judge’s solution on the machine being used to judge this problem.

题意:n在[2,200]的范围,都是整数

找出所有的n*n*n=a*a*a+b*b*b+c*c*c;

(<2a<=b<=c<200)

直接暴力做!

注意的只有格式:=号两边都有空格,第一个逗号后面有一个空格。

public class Main{
public static void main(String[] args) {
for(int m=6;m<=200;m++){ int mt = m*m*m;
int at;
int bt;
int ct;
for(int a=2;a<m;a++){
at=a*a*a; for(int b=a;b<m;b++){
bt = b*b*b;
//适当的防范一下,提高效率
if(at+bt>mt){
break;
} for(int c=b;c<m;c++){
ct=c*c*c; //适当的防范一下,提高效率
if(at+bt+ct>mt){
break;
} if(mt==(at+bt+ct)){
System.out.println("Cube = "+m+", Triple = ("+a+","+b+","+c+")");
} }
}
}
} } }

HDOJ 1334 Perfect Cubes(暴力)的更多相关文章

  1. poj 1543 Perfect Cubes(注意剪枝)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14901   Accepted: 7804 De ...

  2. OpenJudge 2810(1543) 完美立方 / Poj 1543 Perfect Cubes

    1.链接地址: http://bailian.openjudge.cn/practice/2810/ http://bailian.openjudge.cn/practice/1543/ http:/ ...

  3. POJ 1543 Perfect Cubes

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12595   Accepted: 6707 De ...

  4. poj 1543 Perfect Cubes (暴搜)

    Perfect Cubes Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 15302   Accepted: 7936 De ...

  5. ZOJ Problem Set - 1331 Perfect Cubes 判断一个double是否为整数

    zju对时间要求比较高,这就要求我们不能简单地暴力求解(三个循环搞定),就要换个思路:因为在循环时,已知a,确定b,c,d,在外重两层循环中已经给定了b和c,我们就不用遍历d,我们可以利用d^3=a^ ...

  6. poj1543-Perfect Cubes(暴力)

    水题:求n^3 =  a^3 + b^3 + c^3 ;暴力即可 #include<iostream> using namespace std; int main(){ int n ; c ...

  7. UVaLive 3401 Colored Cubes (暴力)

    题意:给定n个立方体,让你重新涂尽量少的面,使得所有立方体都相同. 析:暴力求出每一种姿态,然后枚举每一种立方体的姿态,求出最少值. 代码如下: #pragma comment(linker, &qu ...

  8. A. The Fault in Our Cubes 暴力dfs

    http://codeforces.com/gym/101257/problem/A 把它固定在(0,0, 0)到(2, 2, 2)上,每次都暴力dfs检查,不会超时的,因为规定在这个空间上,一不行, ...

  9. 【题解】「SP867」 CUBES - Perfect Cubes

    这道题明显是一道暴力. 暴力枚举每一个 \(a, b, c, d\) 所以我就写了一个暴力.每个 \(a, b, c, d\) 都从 \(1\) 枚举到 \(100\) #include<ios ...

随机推荐

  1. Understand Rails Authenticity Token

    翻译整理自: http://stackoverflow.com/questions/941594/understand-rails-authenticity-token 主要翻译的是第一个回答,另外结 ...

  2. iOS_15_通过代码自己定义cell_微博UI

    终于效果图: BeyondTableViewController.h // // BeyondTableViewController.h // 15_代码自己定义cell_weibo // // Cr ...

  3. [RxJS] Creation operators: from, fromArray, fromPromise

    The of() operator essentially converted a list of arguments to an Observable. Since arrays are often ...

  4. [Android]android.graphics.Camera实现图像的旋转、缩放,配合Matrix实现图像的倾斜

    android.graphics.Camera可以对图像执行一些比较复杂的操作,诸如旋转与绽放,与Matrix可实现图像的倾斜. 个人总结Camera与Matrix的一些区别如下: Camera的ro ...

  5. Java基础知识强化88:BigDecimal类之BigDecimal类引入和概述 以及 BigDecimal的使用(加减乘除)

    1. BigDecimal类概述: 由于在运算的时候,float类型和double很容易丢失精度.所以为了能够精确的表达.计算浮点数,Java提供了BigDecimal. BigDecimal:不可变 ...

  6. vipw和vigr命令

    Modifying the Configuration Files To add user accounts, it suffices that one line is added to /etc/p ...

  7. C#中的序列化与反序列化

    眼看XX鸟的课程关于C#的知识点就要学完了,翻看网络中流传的教程还是发现了一个课程中没有讲到的知识点:序列化与反序列化 无奈还是了解一下并操作一番,以备后用吧 介绍:就是将对象信息转化为二进制信息以便 ...

  8. Windows Media Player Plus

    Windows Media Player Plus 是一款 Windows Media Player 的插件,提供很多实用功能,Mark 一下.

  9. redis入门指南学习笔记

    redis的常见命令 set key hello get key incr num get num set foo lorem incr foo hset car price 500 hset car ...

  10. (转)jquery.validate.js 的 remote 后台验证

    之前已经有一篇关于jquery.validate.js验证的文章,还不太理解的可以先看看:jQuery Validate 表单验证(这篇文章只是介绍了一下如何实现前台验证,并没有涉及后台验证remot ...