二分图的最大匹配。我是用最大流求解。加个源点s和汇点t;s和每只cow、每个stall和t 连一条容量为1有向边,每只cow和stall(that the cow is willing to produce milk in )也连一条容量为1的边。然后就用ISAP。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<vector> #define rep(i,l,r) for(int i=l;i<r;i++)
#define clr(x,c) memset(x,c,sizeof(x)) using namespace std; const int inf=0x3f3f3f3f,maxn=+; struct edge {
int from,to,cap,flow;
}; struct ISAP {
int n,m,s,t;
vector<edge> edges;
vector<int> g[maxn];
int d[maxn];
int cur[maxn];
int p[maxn];
int num[maxn]; void init(int n) {
this->n=n;
rep(i,,n) g[i].clear();
edges.clear();
clr(d,);
clr(num,);
clr(cur,);
rep(i,,n) num[d[i]]++;
} void addEdge(int from,int to,int cap) {
edges.push_back((edge){from,to,cap,});
edges.push_back((edge){to,from,,,});
m=edges.size();
g[from].push_back(m-);
g[to].push_back(m-);
} int augment() {
int x=t,a=inf;
while(x!=s) {
edge e=edges[p[x]];
a=min(a,e.cap-e.flow);
x=edges[p[x]].from;
}
x=t;
while(x!=s) {
edges[p[x]].flow+=a;
edges[p[x]^].flow-=a;
x=edges[p[x]].from;
}
return a;
} int maxFlow(int s,int t) {
this->s=s; this->t=t;
int flow=;
int x=s;
while(d[s]<n) {
if(x==t) {
flow+=augment();
x=s;
}
int ok=;
rep(i,cur[x],g[x].size()) {
edge e=edges[g[x][i]];
if(e.cap>e.flow && d[x]==d[e.to]+) {
ok=;
p[e.to]=g[x][i];
cur[x]=i;
x=e.to;
break;
}
}
if(!ok) {
int m=n-;
rep(i,,g[x].size()) {
edge e=edges[g[x][i]];
if(e.cap>e.flow) m=min(m,d[e.to]);
}
if(--num[d[x]]==) break;
num[d[x]=m+]++;
cur[x]=;
if(x!=s) x=edges[p[x]].from;
}
}
return flow;
}
} isap; int s() {
int n,m;
cin>>n>>m;
isap.init(n+m+);
rep(i,,n) {
int t;
scanf("%d",&t);
isap.addEdge(,i+,);
rep(j,,t) {
int h;
scanf("%d",&h);
h+=n;
isap.addEdge(i+,h,);
}
}
rep(i,,m) {
int x=i+n+;
isap.addEdge(x,m+n+,) ;
}
return isap.maxFlow(,n+m+);
} int main() {
freopen("stall4.in","r",stdin);
freopen("stall4.out","w",stdout); cout<<s()<<endl; return ;
}

The Perfect Stall
Hal Burch

Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering problems, all the stalls in the new barn are different. For the first week, Farmer John randomly assigned cows to stalls, but it quickly became clear that any given cow was only willing to produce milk in certain stalls. For the last week, Farmer John has been collecting data on which cows are willing to produce milk in which stalls. A stall may be only assigned to one cow, and, of course, a cow may be only assigned to one stall.

Given the preferences of the cows, compute the maximum number of milk-producing assignments of cows to stalls that is possible.

PROGRAM NAME: stall4

INPUT FORMAT

Line 1: One line with two integers, N (0 <= N <= 200) and M (0 <= M <= 200). N is the number of cows that Farmer John has and M is the number of stalls in the new barn.
Line 2..N+1: N lines, each corresponding to a single cow. The first integer (Si) on the line is the number of stalls that the cow is willing to produce milk in (0 <= Si <= M). The subsequent Si integers on that line are the stalls in which that cow is willing to produce milk. The stall numbers will be integers in the range (1..M), and no stall will be listed twice for a given cow.

SAMPLE INPUT (file stall4.in)

5 5
2 2 5
3 2 3 4
2 1 5
3 1 2 5
1 2

OUTPUT FORMAT

A single line with a single integer, the maximum number of milk-producing stall assignments that can be made.

SAMPLE OUTPUT (file stall4.out)

4

USACO Section 4.2 The Perfect Stall(二分图匹配)的更多相关文章

  1. USACO Section 4.2: The Perfect Stall

    这题关键就在将题转换成最大流模板题.首先有一个原始点,N个cow个点, M个barn点和一个终点,原始点到cow点和barn点到终点的流都为1,而cow对应的barn就是cow点到对应barn点的流, ...

  2. POJ1274 The Perfect Stall[二分图最大匹配]

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23911   Accepted: 106 ...

  3. POJ1274 The Perfect Stall[二分图最大匹配 Hungary]【学习笔记】

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23911   Accepted: 106 ...

  4. 洛谷P1894 [USACO4.2]完美的牛栏The Perfect Stall(二分图)

    P1894 [USACO4.2]完美的牛栏The Perfect Stall 题目描述 农夫约翰上个星期刚刚建好了他的新牛棚,他使用了最新的挤奶技术.不幸的是,由于工程问题,每个牛栏都不一样.第一个星 ...

  5. POJ1274 The Perfect Stall 二分图,匈牙利算法

    N头牛,M个畜栏,每头牛仅仅喜欢当中的某几个畜栏,可是一个畜栏仅仅能有一仅仅牛拥有,问最多能够有多少仅仅牛拥有畜栏. 典型的指派型问题,用二分图匹配来做,求最大二分图匹配能够用最大流算法,也能够用匈牙 ...

  6. poj 1274 The Perfect Stall (二分匹配)

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17768   Accepted: 810 ...

  7. POJ-1274The Perfect Stall,二分匹配裸模板题

    The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 23313   Accepted: 103 ...

  8. [POJ] 1274 The Perfect Stall(二分图最大匹配)

    题目地址:http://poj.org/problem?id=1274 把每个奶牛ci向它喜欢的畜栏vi连边建图.那么求最大安排数就变成求二分图最大匹配数. #include<cstdio> ...

  9. USACO 4.2 The Perfect Stall(二分图匹配匈牙利算法)

    The Perfect StallHal Burch Farmer John completed his new barn just last week, complete with all the ...

随机推荐

  1. csharp中DateTime总结

    Table of Contents 1 时间格式输出 2 求某天是星期几 3 字符串转换为DateTime 3.1 String->DateTime 的弹性做法 4 计算2个日期之间的天数差 5 ...

  2. php获取post参数的几种方式

    php获取post参数的几种方式 1.$_POST['paramName'] 只能接收Content-Type: application/x-www-form-urlencoded提交的数据 2.fi ...

  3. src 和 href 的区别

    因为理解不深,到写外部加载Javascript文件或者css文件的时候总是需要去找个例子,这样可不好.现在总结下 href 属性规定被链接文档的位置(URL). href是hyperrefresh的缩 ...

  4. PHP静态成员变量和非静态成员变量

    数据成员可以分静态变量.非静态变量两种. 静态成员: 静态类中的成员加入static修饰符,即是静态成员.可以直接使用类名+静态成员名访问此静态成员,因为静态成员存在于内存,非静态成员需要实例化才会 ...

  5. virtualbox 虚拟机网络设置

    1.宿主机网卡设置 virtualbox 第一块网卡设置 virtualbox第二块网卡设置 2.虚拟机网络设置 找到以上设置中MAC地址对应的那个网卡: 配置网络: 重启网络,ok.

  6. python相似模块用例(一)

    一:threading VS Thread 众所周知,python是支持多线程的,而且是native的线程,其中threading是对Thread模块做了包装,可以更加方面的被使用,threading ...

  7. 数字证书管理工具keytool常用命令介绍

    需要给一个apk加签名,用到了keytool这个工具,下面转载一篇介绍keytool的文章 http://blog.chinaunix.net/uid-17102734-id-2830223.html ...

  8. 【Howie玩docker】-windows下玩docker

    Windows下安装toolbox一直没成功,于是投机取巧,用虚拟机手工打造玩docker的方法. 步骤: 安装虚拟机,安装centos 在win下建立共享文件夹,假如是 f:/share 在cent ...

  9. Oracle EBS-SQL (SYS-2): sys_在线用户查询.sql

    SELECT fs.USER_NAME,       fu.description,       fs.RESPONSIBILITY_NAME,       fs.USER_FORM_NAME,    ...

  10. 转:Http头介绍:Expires,Cache-Control,Last-Modified,ETag

    Http头介绍:Expires,Cache-Control,Last-Modified,ETag 缓存分很多种:服务器缓存,第三方缓存,浏览器缓存等.其中浏览器缓存是代价最小的,因为浏览器缓存依赖的是 ...