Frogger(poj2253)
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 31854   Accepted: 10262

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414 大意:
从A到B有多条路径,先取每条路径的最大值,然后再求出它们的最小值。
比如三条路径,1 3 4;2 5,1 2 1;最大值分别为4,5,2,最小值就是2 使用DIjkstra算法的思路,lowcost[]此时不再是最短路径,而是从起点到结点i的所有路径的最大边中的最小值,算法中维护s集合,从未更新的结点中取出最小节点,不断向外进行扩展。
扩展方法:if(max(lowcost[u],w[u][v])<lowcost[v])
      lowcost[v]=max(lowcost[u],w[u][v])<lowcost[v];

 #include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
#define Max 300+10
#define MMax 0x3f3f3f3f
struct point
{
int x,y;
};
double w[Max][Max];
double lowcost[Max];
bool vis[Max];
point p[Max];
int n;
double dis(point a,point b)
{
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
void Dijkstra(int s)
{
for(int i=;i<n;i++){
lowcost[i]=MMax; /*memset按照字节来赋值,但是int是四个字节*/
vis[i]=;
}
lowcost[]=;
while()
{
int u=-,v;
int i,j;
double Min=MMax;
for(v=;v<n;v++)
if(!vis[v]&&(u==-||lowcost[v]<lowcost[u]))
{
u=v;
}
if(u==-) break;
vis[u]=;
for(v=;v<n;v++)
if(!vis[v]&&max(lowcost[u],w[u][v])<lowcost[v])
lowcost[v]=max(lowcost[u],w[u][v]);
}
return;
}
int main()
{
int i,j,k,count=;
//freopen("in.txt","r",stdin);
while(cin>>n&&n)
{
memset(w,,sizeof());
for(i=;i<n;i++)
scanf("%d%d",&p[i].x,&p[i].y);
for(i=;i<n-;i++)
for(j=i+;j<n;j++)
w[i][j]=w[j][i]=dis(p[i],p[j]);
Dijkstra();
printf("Scenario #%d\nFrog Distance = %0.3lf\n\n",++count,lowcost[]);
}
}
 

Frogger(最短路)的更多相关文章

  1. POJ2253 Frogger —— 最短路变形

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...

  2. POJ 2253 Frogger (最短路)

    Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 28333   Accepted: 9208 Descript ...

  3. B - Frogger 最短路变形('最长路'求'最短路','最短路'求'最长路')

    http://poj.org/problem?id=2253 题目大意: 有一只可怜没人爱的小青蛙,打算去找他的女神青蛙姐姐,但是池塘水路不能走,所以只能通过蹦跶的形式到达目的地,问你从小青蛙到青蛙姐 ...

  4. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  5. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  6. POJ 2253 Frogger 最短路 难度:0

    http://poj.org/problem?id=2253 #include <iostream> #include <queue> #include <cmath&g ...

  7. poj 2253 Frogger(最短路 floyd)

    题目:http://poj.org/problem?id=2253 题意:给出两只青蛙的坐标A.B,和其他的n-2个坐标,任一两个坐标点间都是双向连通的.显然从A到B存在至少一条的通路,每一条通路的元 ...

  8. POJ2253 frogger 最短路 floyd

    #include<iostream>#include<algorithm>#include<stdio.h>#include<string.h>#inc ...

  9. 最短路(Floyd_Warshall) POJ 2253 Frogger

    题目传送门 /* 最短路:Floyd算法模板题 */ #include <cstdio> #include <iostream> #include <algorithm& ...

随机推荐

  1. Nasty Hacks <入门练手题>

    Nasty Hacks Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...

  2. Scala学习笔记--提取器unapply

    提取器就是一个带有unapply方法的对象.你可以把unapply方法当做是伴生对象中apply方法的反向操作. apply方法接收构造参数,然后将他们变成对象. 而unapply方法接受一个对象,然 ...

  3. IOS APP配置.plist汇总(转自coolweather )

    IOS APP配置.plist汇总(转自coolweather ) 此文转自http://www.cocoachina.com/bbs/read.php?tid=89684&page=1 作者 ...

  4. 《Programming WPF》翻译 第5章 3.命名属性

    原文:<Programming WPF>翻译 第5章 3.命名属性 通过把同样的内嵌样式提升到资源中(正如第一章介绍的),我们可以给它一个名字,以及按名字使用它在我们的Button实例上, ...

  5. Android的init过程详解(一)(转)

    本文使用的软件版本 Android:4.2.2 Linux内核:3.1.10 本文及后续几篇文章将对Android的初始化(init)过程进行详细地.剥丝抽茧式地分析,并且在其中穿插了大量的知识,希望 ...

  6. Linux常用命令及使用技巧

    本文重点讲述Linux命令的使用,命令是学习Linux必须熟练掌握的一个部分.Linux下的命令大概有600个,而常用的命令其实只有80个左右,这些常用的命令是需要灵活掌握的.虽然Linux的各个发行 ...

  7. 理解mcelog如何工作

    前言 本文,带你了解几个问题? 本文重点,主要看案例2,带你很好的理解mcelog如何工作的? mcelog的干什么的? mcelog 是 x86 的 Linux 系统上用来 检查硬件错误,特别是内存 ...

  8. Traceroute原理介绍

    一.路由追踪 路由跟踪,就是获取从主机A到达目标主机B这个过程中所有需要经过的路由设备的转发接口IP. 二.ICMP协议 Internet控制报文协议(internet control message ...

  9. Rotate It !!(思维)

    Rotate It !! Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit ...

  10. android学习--TabHost选项卡组件

    TabHost是一种非常有用的组件,TabHost能够非常方便地在窗体上放置多个标签页,每一个标签页获得了一个与外部容器同样大小的组件摆放区域.在手机系统的应用类似"未接电话".& ...