It is possible to show that the square root of two can be expressed as an infinite continued fraction.

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

By expanding this for the first four iterations, we get:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

The next three expansions are 99/70, 239/169, and 577/408, but the eighth expansion, 1393/985, is the first example where the number of digits in the numerator exceeds the number of digits in the denominator.

In the first one-thousand expansions, how many fractions contain a numerator with more digits than denominator?

题目大意:

2的平方根可以被表示为无限延伸的分数:

 2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213...

将其前四次迭代展开,我们得到:

1 + 1/2 = 3/2 = 1.5
1 + 1/(2 + 1/2) = 7/5 = 1.4
1 + 1/(2 + 1/(2 + 1/2)) = 17/12 = 1.41666...
1 + 1/(2 + 1/(2 + 1/(2 + 1/2))) = 41/29 = 1.41379...

接下来三次迭代的展开是99/70, 239/169, and 577/408, 但是第八次迭代的展开, 1393/985, 是第一个分子的位数超过分母的位数的例子。

在前1000次迭代的展开中,有多少个的分子位数超过分母位数?

//(Problem 57)Square root convergents
// Completed on Wed, 12 Feb 2014, 04:45
// Language: C
//
// 版权所有(C)acutus (mail: acutus@126.com)
// 博客地址:http://www.cnblogs.com/acutus/
#include<stdio.h> int add(int des[],int n1,int src[],int n2){
int i,f;
for(i= , f = ; i < n1 || i < n2 ; i++){
des[i] += ( f + src[i] ) ;
f = des[i]/ ;
des[i] %= ;
}
if(f)
des[i++] = f ;
return i;
}
int main(){
int num = ,sum = , k;
int array[][] = {} ;
int nn = ,dn = , f = ;//nn分子长度,dn分母长度,f分子位置 array[][] = ;
array[][] = ;
while(num<){
//分子加分母放到分子位置成为下一个分母
k = add(array[f],nn,array[-f],dn);
//分子加分母放到分母位置成为下一个分子
nn = add( array[-f],dn,array[f],k ) ;
dn = k ;
f = - f ;
if(nn > dn) sum++;
num++;
}
printf("%d\n",sum);
return ;
}
Answer:
153

(Problem 57)Square root convergents的更多相关文章

  1. Project Euler 57: Square root convergents

    五十七.平方根收敛(Square root convergents) 二的平方根可以表示为以下这个无穷连分数: \[ \sqrt 2 =1+ \frac 1 {2+ \frac 1 {2 +\frac ...

  2. (Problem 46)Goldbach's other conjecture

    It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a ...

  3. (Problem 73)Counting fractions in a range

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  4. (Problem 42)Coded triangle numbers

    The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangl ...

  5. (Problem 41)Pandigital prime

    We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...

  6. (Problem 70)Totient permutation

    Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number ...

  7. (Problem 74)Digit factorial chains

    The number 145 is well known for the property that the sum of the factorial of its digits is equal t ...

  8. (Problem 72)Counting fractions

    Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called ...

  9. (Problem 53)Combinatoric selections

    There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 2 ...

随机推荐

  1. C++读写EXCEL文件OLE,java读写excel文件POI 对比

    C++读写EXCEL文件方式比较 有些朋友问代码的问题,将OLE读写的代码分享在这个地方,大家请自己看.http://www.cnblogs.com/destim/p/5476915.html C++ ...

  2. DOM ISO - get current element's XPATH

    DOM ISO - get current element's XPATH DOM ISO - get current element's XPATH

  3. 解决Agent admitted failure to sign using the kye with ssh

    之前如果建立 ssh 连接,只要將公匙复制到~/.ssh/authorized_keys就可以直接登录而不需要建立密碼. 如果在使用时候出现如下信息: Agent admitted failure t ...

  4. apache 配置文件管理

    1. Apache配置系统 从整体来看apache的配置系统包括三个部分: (1) 配置文件:比如 httpd.conf   .htaccess (2) 配置指令:在配置文件 httpd.conf  ...

  5. PHP的排列组合问题 分别从每一个集合中取出一个元素进行组合,问有多少种组合?

    首先说明这是一个数学的排列组合问题C(m,n) = m!/(n!*(m-n)!) 比如:有集合('粉色','红色','蓝色','黑色'),('38码','39码','40码'),('大号','中号') ...

  6. appium 学习各种小功能总结--功能有《滑动图片、保存截图、验证元素是否存在、》---新手总结(大牛勿喷,新手互相交流)

    1.首页滑动图片点击 /** * This Method for swipe Left * 大距离滑动 width/6 除数越大向左滑动距离也越大. * width:720 *height:1280 ...

  7. win7下Java环境变量配置及说明

    在官网上下载与操作系统对应的JDK(http://www.oracle.com/index.html) 比如我的安装路径是E:\jdk1.7.0_51\JDK 右击计算机---->属性----& ...

  8. 批量 GBK 转 UTF8 java

    package encoding; import java.io.File; import java.io.IOException; import java.util.Collection; impo ...

  9. LintCode-不同的子序列

    题目描述: 给出字符串S和字符串T,计算S的不同的子序列中T出现的个数. 子序列字符串是原始字符串通过删除一些(或零个)产生的一个新的字符串,并且对剩下的字符的相对位置没有影响.(比如,“ACE”是“ ...

  10. HDU 1849 Rabbit and Grass

    题解:因为棋子可重叠,所以就等于取石子问题,即尼姆博弈,SG[i]=i,直接将输入数据异或即可. #include <cstdio> int main(){ int SG,n,a; whi ...