关于Mysql索引的笔记
MySQL索引原理
索引目的
索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。如果没有索引,那么你可能需要把所有单词看一遍才能找到你想要的,如果我想找到m开头的单词呢?或者ze开头的单词呢?是不是觉得如果没有索引,这个事情根本无法完成?
索引原理
除了词典,生活中随处可见索引的例子,如火车站的车次表、图书的目录等。它们的原理都是一样的,通过不断的缩小想要获得数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是我们总是通过同一种查找方式来锁定数据。
数据库也是一样,但显然要复杂许多,因为不仅面临着等值查询,还有范围查询(>、<、between、in)、模糊查询(like)、并集查询(or)等等。数据库应该选择怎么样的方式来应对所有的问题呢?我们回想字典的例子,能不能把数据分成段,然后分段查询呢?最简单的如果1000条数据,1到100分成第一段,101到200分成第二段,201到300分成第三段……这样查第250条数据,只要找第三段就可以了,一下子去除了90%的无效数据。但如果是1千万的记录呢,分成几段比较好?稍有算法基础的同学会想到搜索树,其平均复杂度是lgN,具有不错的查询性能。但这里我们忽略了一个关键的问题,复杂度模型是基于每次相同的操作成本来考虑的,数据库实现比较复杂,数据保存在磁盘上,而为了提高性能,每次又可以把部分数据读入内存来计算,因为我们知道访问磁盘的成本大概是访问内存的十万倍左右,所以简单的搜索树难以满足复杂的应用场景。
磁盘IO与预读
前面提到了访问磁盘,那么这里先简单介绍一下磁盘IO和预读,磁盘读取数据靠的是机械运动,每次读取数据花费的时间可以分为寻道时间、旋转延迟、传输时间三个部分,寻道时间指的是磁臂移动到指定磁道所需要的时间,主流磁盘一般在5ms以下;旋转延迟就是我们经常听说的磁盘转速,比如一个磁盘7200转,表示每分钟能转7200次,也就是说1秒钟能转120次,旋转延迟就是1/120/2 = 4.17ms;传输时间指的是从磁盘读出或将数据写入磁盘的时间,一般在零点几毫秒,相对于前两个时间可以忽略不计。那么访问一次磁盘的时间,即一次磁盘IO的时间约等于5+4.17 = 9ms左右,听起来还挺不错的,但要知道一台500 -MIPS的机器每秒可以执行5亿条指令,因为指令依靠的是电的性质,换句话说执行一次IO的时间可以执行40万条指令,数据库动辄十万百万乃至千万级数据,每次9毫秒的时间,显然是个灾难。
考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内,因为局部预读性原理告诉我们,当计算机访问一个地址的数据的时候,与其相邻的数据也会很快被访问到。每一次IO读取的数据我们称之为一页(page)。具体一页有多大数据跟操作系统有关,一般为4k或8k,也就是我们读取一页内的数据时候,实际上才发生了一次IO,这个理论对于索引的数据结构设计非常有帮助。
索引的数据结构
前面讲了生活中索引的例子,索引的基本原理,数据库的复杂性,又讲了操作系统的相关知识,目的就是让大家了解,任何一种数据结构都不是凭空产生的,一定会有它的背景和使用场景,我们现在总结一下,我们需要这种数据结构能够做些什么,其实很简单,那就是:每次查找数据时把磁盘IO次数控制在一个很小的数量级,最好是常数数量级。那么我们就想到如果一个高度可控的多路搜索树是否能满足需求呢?就这样,b+树应运而生。
详解b+树
真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。
b+树的查找过程
如图所示,如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。这样的话,假如数据项为N,每个数据块存储的数据量为m,那么时间复杂度为log(m+1)N。
b+树性质
1.通过上面的分析,我们知道IO次数取决于b+数的高度h,假设当前数据表的数据为N,每个磁盘块的数据项的数量是m,则有h=㏒(m+1)N,当数据量N一定的情况下,m越大,h越小;而m = 磁盘块的大小 / 数据项的大小,磁盘块的大小也就是一个数据页的大小,是固定的,如果数据项占的空间越小,数据项的数量越多,树的高度越低。这就是为什么每个数据项,即索引字段要尽量的小,比如int占4字节,要比bigint8字节少一半。这也是为什么b+树要求把真实的数据放到叶子节点而不是内层节点,一旦放到内层节点,磁盘块的数据项会大幅度下降,导致树增高。当数据项等于1时将会退化成线性表。
2.当b+树的数据项是复合的数据结构,比如(name,age,sex)的时候,b+数是按照从左到右的顺序来建立搜索树的,比如当(张三,20,F)这样的数据来检索的时候,b+树会优先比较name来确定下一步的所搜方向,如果name相同再依次比较age和sex,最后得到检索的数据;但当(20,F)这样的没有name的数据来的时候,b+树就不知道下一步该查哪个节点,因为建立搜索树的时候name就是第一个比较因子,必须要先根据name来搜索才能知道下一步去哪里查询。比如当(张三,F)这样的数据来检索时,b+树可以用name来指定搜索方向,但下一个字段age的缺失,所以只能把名字等于张三的数据都找到,然后再匹配性别是F的数据了, 这个是非常重要的性质,即索引的最左匹配特性。
索引
当数据库一条记录里包含多个字段时,一棵B+树就只能存储主键,如果检索的是非主键字段,则主键索引失去作用,又变成顺序查找了。这时应该在第二个要检索的列上建立第二套索引。 这个索引由独立的B+树来组织。有两种常见的方法可以解决多个B+树访问同一套表数据的问题,一种叫做聚簇索引(clustered index ),一种叫做非聚簇索引(secondary index)。这两个名字虽然都叫做索引,但这并不是一种单独的索引类型,而是一种数据存储方式。对于聚簇索引存储来说,行数据和主键B+树存储在一起,辅助键B+树只存储辅助键和主键,主键和非主键B+树几乎是两种类型的树。对于非聚簇索引存储来说,主键B+树在叶子节点存储指向真正数据行的指针,而非主键。
聚簇索引&非聚簇索引
一图胜千言
关于page的结构,参见
http://www.admin10000.com/document/5372.html
关于Mysql索引的笔记的更多相关文章
- Mysql 索引复习笔记
之前学习索引后由于一直没怎么用,所以也只是粗略看了一下,最近发现索引的用处很大,并且也很多知识点,在此做复习记录. 什么是索引? 百度百科是这样描述的: 索引是为来加速对表中数据行中的检索而创建的一种 ...
- Mysql索引学习笔记
1.btree索引与hash索引 下列范围查询适用于 btree索引和hash索引: SELECT * FROM t1 WHERE key_col = 1 OR key_col IN (15,18,2 ...
- mysql索引使用笔记
1.使用explain语句查看性能mysql> explain select product_id from orders where order_id in (123, 312, 223, 1 ...
- MySQL索引优化 笔记
少取字段,建立合理的索引 表优化: 1 定长与变长分离 如果都是定长 查询比较快 因为每一行的字节都是固定的 fixed 2 常用字段和不常用字段要分离 用户表 常用 放主表 个人介绍不常用 还比较长 ...
- mysql颠覆实战笔记(二)-- 用户登录(一):唯一索引的妙用
版权声明:笔记整理者亡命小卒热爱自由,崇尚分享.但是本笔记源自www.jtthink.com(程序员在囧途)沈逸老师的<web级mysql颠覆实战课程 >.如需转载请尊重老师劳动,保留沈逸 ...
- Mysql数据库学习笔记之数据库索引(index)
什么是索引: SQL索引有两种,聚集索引和非聚集索引,索引主要目的是提高了SQL Server系统的性能,加快数据的查询速度与减少系统的响应时间. 聚集索引:该索引中键值的逻辑顺序决定了表中相应行的物 ...
- MySQL数据库学习笔记(六)----MySQL多表查询之外键、表连接、子查询、索引
本章主要内容: 一.外键 二.表连接 三.子查询 四.索引 一.外键: 1.什么是外键 2.外键语法 3.外键的条件 4.添加外键 5.删除外键 1.什么是外键: 主键:是唯一标识一条记录,不能有重复 ...
- MySQL数据库学习笔记----MySQL多表查询之外键、表连接、子查询、索引
本章主要内容: 一.外键 二.表连接 三.子查询 四.索引 一.外键: 1.什么是外键 2.外键语法 3.外键的条件 4.添加外键 5.删除外键 1.什么是外键: 主键:是唯一标识一条记录,不能有重复 ...
- SQL学习笔记五之MySQL索引原理与慢查询优化
阅读目录 一 介绍 二 索引的原理 三 索引的数据结构 四 聚集索引与辅助索引 五 MySQL索引管理 六 测试索引 七 正确使用索引 八 联合索引与覆盖索引 九 查询优化神器-explain 十 慢 ...
随机推荐
- C++使用OLE高速读写EXCEL的源码
我的代码参考的地方是这儿,再次感谢原作者 http://blog.csdn.net/gyssoft/archive/2007/04/29/1592104.aspx 我根据自己的需要做了整理,干净了一点 ...
- m文件转换为C/C++文件的编译、绘图、参数、打包问题总结
在工程计算相关项目中,常常利用Matlab来完成计算.算法.绘图等功能.使用Matlab来完成这些功能非常简单,Matlab提供的m编程语言功能强大,代码量少.为了在自己的C/C++项目中加入这些功能 ...
- g711u与g729比較编码格式
•711a-编解码格式为G.711 alaw •g711u-编解码格式为G.711 ulaw (the default) •g729-编解码格式为G.729 •g729a-编解码格式为G.729a 上 ...
- poj1637Sightseeing tour(混合图欧拉回路)
题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...
- Android 动画animation 深入分析
转载请注明出处:http://blog.csdn.net/farmer_cc/article/details/18259117 Android 动画animation 深入分析 前言:本文试图通过分析 ...
- raphael入门到精通---属性和事件篇
属性的使用 上一篇文章我们介绍了raphael如何生成基本的图形(元素),对于每个元素来讲,我们可以添加很多的元素(attr) 下面我就来简单的介绍下元素属性的使用(path元素属性我后面单独列出来介 ...
- ASP.NET之电子商务系统开发-3(订单)
一.前言 继上次的购物车,这是第三篇.记录一下订单功能.这功能做的时候,走过弯路,很是烧脑,因为思路没理顺,数据库设计的也不怎么好,做到一半才发现有问题,接着把数据库重新设计好,理清思路后,终于完成了 ...
- iOS:将NSDate转换为当前时区时间
NSDate *date = [NSDate date]; NSTimeZone *zone = [NSTimeZone systemTimeZone]; NSInteger interval = ...
- 访问权限系列一(public/private/protected/default):成员变量
通过两个程序包对自身或互相之间的访问,得到结果.(先编译Test_01,得到class文件,通过Test的集中访问情况) 如下Test.java中内容: package com.java; /* * ...
- UVa1583 Digit Generator
#include <stdio.h> int main(){ int T, N, i, k, digitsum, generator; scanf("%d" ...