Sum of Consecutive Prime Numbers
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 18427   Accepted: 10122

Description

Some positive integers can be represented by a sum of one or more consecutive prime numbers. How many such representations does a given positive integer have? For example, the integer 53 has two representations 5 + 7 + 11 + 13 + 17 and 53. The integer 41 has three representations 2+3+5+7+11+13, 11+13+17, and 41. The integer 3 has only one representation, which is 3. The integer 20 has no such representations. Note that summands must be consecutive prime
numbers, so neither 7 + 13 nor 3 + 5 + 5 + 7 is a valid representation for the integer 20.

Your mission is to write a program that reports the number of representations for the given positive integer.

Input

The
input is a sequence of positive integers each in a separate line. The
integers are between 2 and 10 000, inclusive. The end of the input is
indicated by a zero.

Output

The
output should be composed of lines each corresponding to an input line
except the last zero. An output line includes the number of
representations for the input integer as the sum of one or more
consecutive prime numbers. No other characters should be inserted in the
output.

Sample Input

2
3
17
41
20
666
12
53
0

Sample Output

1
1
2
3
0
0
1
2

Source

Japan 2005
过的第一段代码,可是后来发现自己事实上是蠢了,因为根本没必要用筛选法挑选素数,以至于我wrong了几次,因为筛选法挑出来的素数在数组中不是连续存在的,如果不再把素数统一赋值到一个连续的数组中的话,我们在后面进行累加的时候就会出现一些困难,因为我们还需要给vis一个循环,让其过滤掉非素数。我wrong了一次后发现了这个问题,于是赋值到一个连续的数组中,当时我选择的是在筛选素数的同时进行赋值,可是wrong了几次,后来发现,在筛选的过程中赋值,isprimer数组中的素数是不完整的,因为筛选法本身就不是全部遍历筛选的!
//memory:744K time:0MS
#include <iostream>
#include<cmath>
#include<cstring>
using namespace std;
const int MAXN = ;
int main()
{
bool vis[MAXN];
int isprime[MAXN],k=;
memset(vis,,sizeof(vis));
for(int i=;i<(int)sqrt((double)MAXN);i++) //筛选法挑选素数
{
if(!vis[i])
{
for(int j=i*i;j<MAXN;j+=i)
vis[j]=;
}
}
for(int i=;i<MAXN;i++)
{
if(!vis[i])
isprime[k++]=i;
}
int n;
while(cin>>n)
{
if(n==)
break;
//因为不一定是从头开始,所以需要两层循环,
//每一个i都需要从i开始往后累加
int num=;
for(int i=;isprime[i]<=n;i++) //isprime循环
{
int ans = ; //累加器
for(int j=i ; j<k&& ans<n ; j++) //从每一个i开始往后循环
{
ans += isprime[j];
}
if(ans==n)
num++;
}
cout<<num<<endl;
}
return ;
}

以下给出一个较好的代码,挑选素数的想法很好,素数只能被素数整除,不会被偶数整除。但是这种方法很明显慢一些

//memory :736K time :32MS
#include<iostream>
using namespace std;
const int MAXN = ;
int prime[MAXN],prime_num = ; bool isprime(int n)
{
for(int i=;i<prime_num;i++)
{
if(n%prime[i]==)
return false;
}
return true;
} int main()
{
int n; for(int i=;i<MAXN;i++)
{
if(isprime(i))
{
prime[prime_num++]=i;
}
}
while(cin>>n)
{
if(n==)
break;
int num=;
for(int i=;prime[i]<=n;i++)
{
int ans = ;
for(int j=i;j<prime_num&&ans<n;j++)
{
ans += prime[j];
}
if(ans == n)
num++;
}
cout<<num<<endl;
}
return ;
}

poj2739的更多相关文章

  1. POJ2739 Sum of Consecutive Prime Numbers(尺取法)

    POJ2739 Sum of Consecutive Prime Numbers 题目大意:给出一个整数,如果有一段连续的素数之和等于该数,即满足要求,求出这种连续的素数的个数 水题:艾氏筛法打表+尺 ...

  2. poj2739 poj2100 尺取法基础(二)

    都是很简单的题目 poj2739素数打表+单点推移 #include<iostream> #include<cstring> #include<cstdio> us ...

  3. POJ2739解题报告

    2017-09-01 17:04:45 writer:pprp 一开始读错题了,总是想不到,其实不是很难,但是就是心理太着急了,反而浪费了很长时间 /* @param:poj2739 @writer: ...

  4. POJ2739 - Sum of Consecutive Prime Numbers(素数问题)

    题目大意 给定N,要求你计算用连续的素数的和能够组成N的种数 题解 先筛选出素数,然后暴力判断即可... 代码: #include<iostream> #include<cstrin ...

  5. 【POJ2739】Sum of Consecutive Prime Numbers

    简单的素数打表,然后枚举.开始没注意n读到0结束,TLE了回..下次再认真点.A过后讨论里面有个暴力打表过的,给跪了! #include <iostream> #include <c ...

  6. poj2739尺取法+素数筛

    Some positive integers can be represented by a sum of one or more consecutive prime numbers. How man ...

  7. poj2739(尺取法+质数筛)

    题意:给你一个数,问这个数能否等于一系列连续的质数的和: 解题思路:质数筛打出质数表:然后就是尺取法解决: 代码: #include<iostream> #include<algor ...

  8. POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25225 ...

  9. POJ2739(尺取法)

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23931 ...

随机推荐

  1. join 数据库

    早上随手拿了本数据库的书,看到关于join的,想到很久之前妹妹(妹妹离职了,好桑感)发给我的一个简单浅显易懂的关于这方面的网页,所以翻出来瞅瞅,贴出来与大家共享之. http://coolshell. ...

  2. Oracle442个应用场景------------基础应用场景

    /////////////////基础知识////////////////// 应用场景178:最简单的select语句 SELECT * FROM Employees; 应用场景179:指定要查询的 ...

  3. c++11 线程:让你的多线程任务更轻松

      介绍 本文旨在帮助有经验的Win32程序员来了解c++ 11线程库及同步对象 和 Win32线程及同步对象之间的区别和相似之处. 在Win32中,所有的同步对象句柄(HANDLE)是全局句柄.它们 ...

  4. Unity 3D 动画帧事件

    前几天在项目开发中碰到一个这样的需求,RPG游戏中,特效和动画播放不同步的.假如主角在攻击NPC时,先实例化特效,后播放动画.动画毕竟是有一个时间长度的.等到动画播放攻击挥刀的那一瞬间时,特效可能早就 ...

  5. 实现简单的django上传文件

    本文用django实现上传文件并保存到指定路径下,没有使用forms和models,步骤如下: 1.在模板中使用form表单,因为这个表单使用于上传文件的,所以method属性必须设置为post,而且 ...

  6. SQL数据库注入防范 ASP.NET Globle警告

    在项目中的Global.asax页面代码中加下面的代码,就可以有效的防范简单的SQL注入. protected void Application_BeginRequest(Object sender, ...

  7. VS2015 新Web项目(C#6)出现CS1617异常的解决

    VS2015 新Web项目(C#6)出现CS1617错误的解决 VS2015新增了对C#6的支持. 在新的Web项目模板中通过引入nuget包Microsoft.CodeDom.Providers.D ...

  8. Oracle语句块PL/SQL循环判断

    - --pl/sql Procedural Language /sql --被数据库编译保存,由用户调用 --程序块 /* 语法 Declare – 声明变量 --声明变量 Age int; //没有 ...

  9. 脚本化HTTP

    1.HTTP: 定义:超文本传输协议 (HTTP-Hypertext transfer protocol) 是一种详细规定了浏览器和万维网服务器之间互相通信的规则,通过因特网传送万维网文档的数据传送协 ...

  10. 洛谷 P3392 涂国旗

    P3392 涂国旗 题目描述 某国法律规定,只要一个由N*M个小方块组成的旗帜符合如下规则,就是合法的国旗.(毛熊:阿嚏——) 从最上方若干行(>=1)的格子全部是白色的. 接下来若干行(> ...