The number of steps

Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^

题目描写叙述

Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s
leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has
it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the
KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?


输入

There
are no more than 70 test cases.

 
In each case , first Input a positive integer n(0
The
input is terminated with 0. This test case is not to be processed.

输出

Please
calculate the expected number of steps required to reach the KEY room, there are 2 digits after the decimal point.

演示样例输入

3
0.3 0.7
0.1 0.3 0.6
0

演示样例输出

3.41

提示

 

来源

2013年山东省第四届ACM大学生程序设计竞赛
概率dp的第一道题目,题目比較简单。
到着求解,最后一个点到最后的期望是0,其它的都由它连接的点的期望求出来。

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd2luZGRyZWFtcw==/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast">

假设i到j的概率是pij,i到i的概率是pii,期望是E,那么求1到4的期望是
1.   E4 = 0 。
2.   E3 =E3 *P33
+ E4 * P34 + 1
;
3.  
E2 = E2 *P22+ E4
* P24 + 1  ;
4.  
E1 =E1 *P11 + E2
*P12 +E3 * P13 + 1
 ;
记忆化搜索,最后推出要求的值
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
double dp[100][100] ;
double a , b , c , d , e ;
int i , j , n ;
int ff(int x,int y)
{
if( x <= n && y >=(n+1)-x )
return 1 ;
return 0 ;
}
void f()
{ return ;
}
int main()
{
while(scanf("%d", &n) && n)
{
scanf("%lf %lf", &a, &b);
scanf("%lf %lf %lf", &c, &d, &e);
memset(dp,0,sizeof(dp));
for(i = n ; i >= 1 ; i--)
{
for(j = (n+1)-i ; j <= n ; j++)
{
if(i == n && j == (n+1)-i) continue ;
else if( i == n )
dp[i][j] = 1.0*( dp[i][j-1] ) + 1.0 ;
else
{
if( j == (n+1)-i )
dp[i][j] = a*dp[i+1][j-1] + b*dp[i+1][j] + 1.0 ;
else
dp[i][j] = c*dp[i+1][j-1] + d*dp[i+1][j] + e*dp[i][j-1] + 1.0 ;
}
}
}
printf("%.2lf\n", dp[1][n]);
}
return 0;
}

sdut2623--The number of steps(概率dp第一弹,求期望)的更多相关文章

  1. The number of steps(概率dp)

    Description Mary stands in a strange maze, the maze looks like a triangle(the first layer have one r ...

  2. sgu 495. Kids and Prizes (简单概率dp 正推求期望)

    题目链接 495. Kids and Prizes Time limit per test: 0.25 second(s)Memory limit: 262144 kilobytes input: s ...

  3. hdu 4336 Card Collector (概率dp+位运算 求期望)

    题目链接 Card Collector Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  4. hdu 3853 LOOPS (概率dp 逆推求期望)

    题目链接 LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Tota ...

  5. 【概率dp】【数学期望】Gym - 101190F - Foreign Postcards

    http://blog.csdn.net/DorMOUSENone/article/details/73699630

  6. [TS-A1489][2013中国国家集训队第二次作业]抽奖[概率dp]

    概率dp第一题,开始根本没搞懂,后来看了09年汤可因论文才基本搞懂,关键就是递推的时候做差比较一下,考虑新加入的情况对期望值的贡献,然后推推公式(好像还是不太会推qaq...) #include &l ...

  7. 13年山东省赛 The number of steps(概率dp水题)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud The number of steps Time Limit: 1 Sec  Me ...

  8. [2013山东ACM]省赛 The number of steps (可能DP,数学期望)

    The number of steps nid=24#time" style="padding-bottom:0px; margin:0px; padding-left:0px; ...

  9. SDUT 2623 The number of steps (概率)

    The number of steps Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Mary stands in a stra ...

随机推荐

  1. angularjs金额大写过滤器

    数字转中文 MyAppFilter.filter('rmbFilter',[function(){ function ChinaCost(input){ var numberValue=new Str ...

  2. mybati之parameterType传递多个参数

    当在查询的时候需要传入多个参数的时候该怎么办呢: 1,封装成一个Model对象,底层HashMap还是一个 User user=new User(); user.setUserName("z ...

  3. 配置squid代理服务

    1. 简述一下squid的用途?squid可以做代理和缓存服务器,而做代理时,可以分为正向代理和反向代理.正向代理用在企业办公环境中,企业员工上网通过代理来上网,代理的缓存功能可以为企业节省宝贵的带宽 ...

  4. div需要重置吗?

    看看所有常用标签的默认margin.padding?Demo戳这里 - - 当你每次看到为那一长串标签设置margin: 0; padding: 0; 的时候,你是否想看看哪些标签,在哪些浏览器里有默 ...

  5. Mysql中natural join和inner join的区别

    假设有如下两个表TableA,TableB TableA TableB Column1 Column2 Column1 Column3 1 2 1 3 TableA的Column1列名和TableB的 ...

  6. document 写法

    # UfsProgressBar ## Component InfoA progress bar component of specified progress. ## Usage```<ufs ...

  7. dedecms _ 当前位置问题的代码

    {dede:field name='position' runphp='yes'} $tc=" > "; $tf=split($tc,@me); $tn=count($tf) ...

  8. xcode5.1上真机调试报告No architectures to compile for...的解决办法

    由于手头上只有一台IPAD一代,近期升级到IOS5.0了(人家apple只让升级到此为止)而开发环境Xcode版本是5.1,默认情况下XCode编译出来的代码最低能跑在IOS6.0下, 于是GOOGL ...

  9. HTML&CSS基础学习笔记1.15-合并单元格

    合并单元格 之前的文章中,我们已经能够创建一个简单地表格了,如果我们需要把横向的某两个相邻单元格<td>或者纵向的某两个相邻单元格<td>合并,我们该怎么做呢?我们要知道的知识 ...

  10. js 简单倒计时插件和使用方法

    // 倒计时插件 (function (){ function countdown(config){ var startDate = config.start ? new Date(config.st ...