http://www.lintcode.com/en/problem/edit-distance/

2016-08-29

给出两个单词word1和word2,计算出将word1 转换为word2的最少操作次数。

你总共三种操作方法:

  • 插入一个字符
  • 删除一个字符
  • 替换一个字符
样例

给出 work1="mart" 和 work2="karma"

返回 3

标签: 动态规划

解题:

此题为典型的动态规划问题,可以按照一般解题思路解决。

首先定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。

显然可以有如下动态规划公式:

  • if i == 0 且 j == 0,edit(i, j) = 0
  • if i == 0 且 j > 0,edit(i, j) = j
  • if i > 0 且j == 0,edit(i, j) = i
  • if i ≥ 1  且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。

实现代码如下:

class Solution {
public:
/**
* @param word1 & word2: Two string.
* @return: The minimum number of steps.
*/
int minDistance(string word1, string word2) {
// write your code here
//@@@@@动态规划解题套路@@@@@
//可以通过具体举例,模拟执行过程,绘制表格来找出规律!!! int w1=word1.length();
int w2=word2.length();
int dp[w1+][w2+];
dp[][]=; for(int i=;i<w1;i++){
dp[i+][]=i+;
}
for(int j=;j<w2;j++){
dp[][j+]=j+;
} for( int i=;i<w1;i++){
for(int j=;j<w2;j++){
if(word1[i]==word2[j]){
dp[i+][j+]=dp[i][j];
}
else{
dp[i+][j+]=min(dp[i][j+]+,min(dp[i+][j]+,dp[i][j]+));
}
}
}
return dp[w1][w2];
}
};

总结:遇到这类题目,可以用套路来解题。不同的是,需要根据不同的要求写出某个子问题的解的表达式。有些可能不能直接一眼看出他们的关系,所以

需要自己通过具体举例,模拟执行过程,最终归纳出结果。(多思考)

Lintcode--008(编辑距离)的更多相关文章

  1. lintcode:最小编辑距离

    最小编辑距离 给出两个单词word1和word2,计算出将word1 转换为word2的最少操作次数. 你总共三种操作方法: 插入一个字符 删除一个字符 替换一个字符 样例 给出 work1=&quo ...

  2. (lintcode全部题目解答之)九章算法之算法班题目全解(附容易犯的错误)

    --------------------------------------------------------------- 本文使用方法:所有题目,只需要把标题输入lintcode就能找到.主要是 ...

  3. [LintCode]——目录

    Yet Another Source Code for LintCode Current Status : 232AC / 289ALL in Language C++, Up to date (20 ...

  4. [LeetCode] One Edit Distance 一个编辑距离

    Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...

  5. C#实现Levenshtein distance最小编辑距离算法

    Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...

  6. 利用Levenshtein Distance (编辑距离)实现文档相似度计算

    1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...

  7. Lintcode 85. 在二叉查找树中插入节点

    -------------------------------------------- AC代码: /** * Definition of TreeNode: * public class Tree ...

  8. Lintcode 166. 主元素

    ----------------------------------- Moore's voting algorithm算法:从一个集合中找出出现次数半数以上的元素,每次从集合中去掉一对不同的数,当剩 ...

  9. Lintcode 166. 链表倒数第n个节点

    ----------------------------------- 最开始的想法是先计算出链表的长度length,然后再从头走 length-n 步即是需要的位置了. AC代码: /** * De ...

随机推荐

  1. ACM2055_ctype.h_cctype

    #include<iostream> int main() { using namespace std; int y,count; char x; cin>>count; wh ...

  2. zookeeper[6] zookeeper FAQ(转)

    转自:http://www.cnblogs.com/zhengran/p/4601855.html 1. 如何处理CONNECTION_LOSS?在Zookeeper中,服务器和客户端之间维持一个长连 ...

  3. Java继承与清理

    [程序实例] import java.util.*; class Characteristic { private String s; Characteristic(String s) { this. ...

  4. xml to json

    // Changes XML to JSONfunction xmlToJson(xml) {    // Create the return object    var obj = {};    i ...

  5. DedeCMS源码安装

    一.源码下载地址 可以从以下网站下载DedeCMS源码进行安装,这里我下载了AB模板网的一个服装网站源码来演示DedeCMS源码的安装 http://www.adminbuy.cn/dedecms/2 ...

  6. [置顶] Android的IPC访问控制设计与实现

    3.3.1 IPC钩子函数设计与实现 IPC Binder是Android最重要的进程间通信机制,因此,必须在此实施强制访问控制. 1. 修改secuirty.h 打开终端shell,输入指令“cd ...

  7. 開始学习swift开发

    近期要開始学习swift开发了,接下来的日子,会记录学习swift的历程.

  8. (各个公司面试原题)在线做了一套CC++综合測试题,也来測一下你的水平吧(二)

    刚才把最后的10道题又看了下.也发上来吧. 以下给出试题.和我对题目的一些理解 前10道题地址 (各个公司面试原题)在线做了一套CC++综合測试题.也来測一下你的水平吧(一) 11.设已经有A,B,C ...

  9. php 回调函数

    publicfunction transaction(Closure $callback){     $this->beginTransaction();     // We'll simply ...

  10. [SVG] Simple introduce for SVG

    Just like create html page, you can create a svg tag by: <?xml version="1.0" encoding=& ...