Lintcode--008(编辑距离)
http://www.lintcode.com/en/problem/edit-distance/
2016-08-29
给出两个单词word1和word2,计算出将word1 转换为word2的最少操作次数。
你总共三种操作方法:
- 插入一个字符
- 删除一个字符
- 替换一个字符
给出 work1="mart" 和 work2="karma"
返回 3
标签: 动态规划
解题:
此题为典型的动态规划问题,可以按照一般解题思路解决。
首先定义这样一个函数——edit(i, j),它表示第一个字符串的长度为i的子串到第二个字符串的长度为j的子串的编辑距离。
显然可以有如下动态规划公式:
- if i == 0 且 j == 0,edit(i, j) = 0
- if i == 0 且 j > 0,edit(i, j) = j
- if i > 0 且j == 0,edit(i, j) = i
- if i ≥ 1 且 j ≥ 1 ,edit(i, j) == min{ edit(i-1, j) + 1, edit(i, j-1) + 1, edit(i-1, j-1) + f(i, j) },当第一个字符串的第i个字符不等于第二个字符串的第j个字符时,f(i, j) = 1;否则,f(i, j) = 0。
实现代码如下:
class Solution {
public:
/**
* @param word1 & word2: Two string.
* @return: The minimum number of steps.
*/
int minDistance(string word1, string word2) {
// write your code here
//@@@@@动态规划解题套路@@@@@
//可以通过具体举例,模拟执行过程,绘制表格来找出规律!!! int w1=word1.length();
int w2=word2.length();
int dp[w1+][w2+];
dp[][]=; for(int i=;i<w1;i++){
dp[i+][]=i+;
}
for(int j=;j<w2;j++){
dp[][j+]=j+;
} for( int i=;i<w1;i++){
for(int j=;j<w2;j++){
if(word1[i]==word2[j]){
dp[i+][j+]=dp[i][j];
}
else{
dp[i+][j+]=min(dp[i][j+]+,min(dp[i+][j]+,dp[i][j]+));
}
}
}
return dp[w1][w2];
}
};
总结:遇到这类题目,可以用套路来解题。不同的是,需要根据不同的要求写出某个子问题的解的表达式。有些可能不能直接一眼看出他们的关系,所以
需要自己通过具体举例,模拟执行过程,最终归纳出结果。(多思考)
Lintcode--008(编辑距离)的更多相关文章
- lintcode:最小编辑距离
最小编辑距离 给出两个单词word1和word2,计算出将word1 转换为word2的最少操作次数. 你总共三种操作方法: 插入一个字符 删除一个字符 替换一个字符 样例 给出 work1=&quo ...
- (lintcode全部题目解答之)九章算法之算法班题目全解(附容易犯的错误)
--------------------------------------------------------------- 本文使用方法:所有题目,只需要把标题输入lintcode就能找到.主要是 ...
- [LintCode]——目录
Yet Another Source Code for LintCode Current Status : 232AC / 289ALL in Language C++, Up to date (20 ...
- [LeetCode] One Edit Distance 一个编辑距离
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance ...
- C#实现Levenshtein distance最小编辑距离算法
Levenshtein distance,中文名为最小编辑距离,其目的是找出两个字符串之间需要改动多少个字符后变成一致.该算法使用了动态规划的算法策略,该问题具备最优子结构,最小编辑距离包含子最小编辑 ...
- 利用Levenshtein Distance (编辑距离)实现文档相似度计算
1.首先将word文档解压缩为zip /** * 修改后缀名 */ public static String reName(String path){ File file=new File(path) ...
- Lintcode 85. 在二叉查找树中插入节点
-------------------------------------------- AC代码: /** * Definition of TreeNode: * public class Tree ...
- Lintcode 166. 主元素
----------------------------------- Moore's voting algorithm算法:从一个集合中找出出现次数半数以上的元素,每次从集合中去掉一对不同的数,当剩 ...
- Lintcode 166. 链表倒数第n个节点
----------------------------------- 最开始的想法是先计算出链表的长度length,然后再从头走 length-n 步即是需要的位置了. AC代码: /** * De ...
随机推荐
- 【HDOJ】2585 Hotel
字符串水题. #include <cstdio> #include <cstring> #include <cstdlib> #define MAXN 55 cha ...
- Java中string拼接,StringBuilder,StringBuffer和+
Java中string拼接,StringBuilder,StringBuffer和+,到底哪个更合适? StringBuilder线程不安全,效率较线程安全的StringBuffer高.jdk1.5之 ...
- AngularJs中文社区学习资料
AngularJs中文社区学习资料,供学习: http://angularjs.cn/tag/AngularJS
- USACO6.4-Wisconsin Squares:搜索
Wisconsin Squares It's spring in Wisconsin and time to move the yearling calves to the yearling past ...
- AOJ 0118 深度优先搜索
日文题... 题意:一个面积为H*W的果园,种了苹果,梨和蜜柑.相邻(上下左右)的果树属于同一个区域,问果园共有多少个区域. 分析:迷宫问题.对于每一个格子,可以用深度优先搜索把相同果树的格子遍历并标 ...
- Java[2] 分布式服务架构之java远程调用技术浅析(转http://www.uml.org.cn/zjjs/201208011.asp)
转自:http://www.uml.org.cn/zjjs/201208011.asp 在分布式服务框架中,一个最基础的问题就是远程服务是怎么通讯的,在Java领域中有很多可实现远程通讯的技术,例如: ...
- 解决 'utf-8' codec can't decode byte 0x8b in position 1: invalid start byte
"Accept-Encoding": "gzip, deflate", 这条信息代表本地可以接收压缩格式的数据,而服务器在处理时就将大文件压缩再发回客户端,IE ...
- StoryBoard 页面传值
如图新建一个viewController和DetailViewController VC 和DetailVC 联线的Idetnifier 设置为:GoDetailVC ViewController主要 ...
- javascript--瀑布流
简单瀑布流代码实现 html代码例如以下 <!DOCTYPE html> <html> <head> <meta http-equiv="Conte ...
- C#位移运算符
代码如下: /// <summary> /// 位移运算符"<<"左位移运算符,">>"右位移运算符 /// 在进行位移运算 ...