美帝的有心人士收集了市面上的矩阵分解的差点儿全部算法和应用,因为源地址在某神奇物质之外,特转载过来,源地址

Matrix Decompositions has
a long history and generally centers around a set of known factorizations such as LU, QR, SVD and eigendecompositions. More recent
factorizations have seen the light of the day with work started with the advent of NMF, k-means and related algorithm
 [1].
However, with the advent of new methods based on random projections and convex optimization that started in part in the compressive
sensing literature
, we are seeing another surge of very diverse algorithms dedicated to many different kinds of matrix factorizations with new constraints based on rank and/or positivity and/or sparsity,… As a result of this large increase in interest,
I have decided to keep a list of them here following the success of the big
picture in compressive sensing
.

The sources for this list include the following most excellent sites: Stephen
Becker’s page
Raghunandan H. Keshavan‘ s pageNuclear
Norm and Matrix Recovery
 through SDP by Christoph HelmbergArvind
Ganesh
’s Low-Rank Matrix Recovery and Completion via Convex
Optimization
 who provide more in-depth additional information.  Additional codes were featured also on Nuit
Blanche
. The following people provided additional inputs: Olivier GriselMatthieu
Puigt
.

Most of the algorithms listed below generally rely on using the nuclear norm as a proxy to the rank functional. It
may not be optimal
. Currently, CVX ( Michael
Grant
 and Stephen  Boyd) consistently allows one to explore other
proxies for the rank functional such as thelog-det as
found by Maryam  FazellHaitham
Hindi
Stephen Boyd. ** is used to show that the algorithm uses
another heuristic than the nuclear norm.

In terms of notations, A refers to a matrix, L refers to a low rank matrix, S a sparse one and N to a noisy one. This page lists the different codes that implement the following matrix factorizations: Matrix Completion, Robust
PCA , Noisy Robust PCA, Sparse PCA, NMF, Dictionary Learning, MMV, Randomized Algorithms and other factorizations. Some of these toolboxes can sometimes implement several of these decompositions and are listed accordingly. Before I list algorithm here, I generally
feature them on Nuit Blanche under the MF tag: http://nuit-blanche.blogspot.com/search/label/MF or. you
can also subscribe to the Nuit Blanche feed,

Matrix Completion, A = H.*L with H a known mask, L unknown solve
for L lowest rank possible

The idea of this approach is to complete the unknown coefficients of a matrix based on the fact that the matrix is low rank:

Noisy Robust PCA,  A = L + S + N with L, S, N unknown, solve
for L low rank, S sparse, N noise

Robust PCA : A = L + S with L, S, N unknown, solve for L low
rank, S sparse

Sparse PCA: A = DX  with unknown D and X, solve for sparse
D

Sparse PCA on wikipedia

  • R. Jenatton, G. Obozinski, F. Bach. Structured Sparse Principal Component Analysis. International Conference on Artificial Intelligence and Statistics (AISTATS). [pdf]
    [code]
  • SPAMs
  • DSPCA: Sparse
    PCA using SDP
     . Code ishere.
  • PathPCA: A fast greedy algorithm for Sparse PCA. The code is here.

Dictionary Learning: A = DX  with unknown D and X, solve for sparse
X

Some implementation of dictionary learning implement the NMF

NMF: A = DX with unknown D and X, solve for elements of D,X
> 0

Non-negative
Matrix Factorization (NMF) on wikipedia

Multiple Measurement Vector (MMV) Y = A X with unknown X and rows
of X are sparse.

Blind Source Separation (BSS) Y = A X with unknown A and X and
statistical independence between columns of X or subspaces of columns of X

Include Independent Component Analysis (ICA), Independent Subspace Analysis (ISA), and Sparse Component Analysis (SCA). There are many available codes for ICA and some for SCA. Here is a non-exhaustive list of some
famous ones (which are not limited to linear instantaneous mixtures). TBC

ICA:

SCA:

Randomized Algorithms

These algorithms uses generally random projections to shrink very large problems into smaller ones that can be amenable to traditional matrix factorization methods.

Resource

Randomized algorithms for matrices and data by Michael W. Mahoney

Randomized Algorithms for Low-Rank Matrix
Decomposition

Other factorization

D(T(.)) = L + E with unknown L, E and unknown transformation T and solve
for transformation T, Low Rank L and Noise E

Frameworks featuring advanced Matrix factorizations

For the time being, few have integrated the most recent factorizations.

GraphLab / Hadoop

Books

Example of use

Sources

Arvind Ganesh’s Low-Rank
Matrix Recovery and Completion via Convex Optimization

Relevant links

Reference:

A
Unified View of Matrix Factorization Models by Ajit P. Singh and Geoffrey J. Gordon

本文引用地址:http://blog.sciencenet.cn/blog-242887-483128.html

Matrix Factorization, Algorithms, Applications, and Avaliable packages的更多相关文章

  1. Matrix Factorization SVD 矩阵分解

    Today we have learned the Matrix Factorization, and I want to record my study notes. Some kownledge ...

  2. 关于NMF(Non-negative Matrix Factorization )

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  3. 机器学习技法:15 Matrix Factorization

    Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of ...

  4. 《Non-Negative Matrix Factorization for Polyphonic Music Transcription》译文

    NMF(非负矩阵分解),由于其分解出的矩阵是非负的,在一些实际问题中具有非常好的解释,因此用途很广.在此,我给大家介绍一下NMF在多声部音乐中的应用.要翻译的论文是利用NMF转录多声部音乐的开山之作, ...

  5. 机器学习技法笔记:15 Matrix Factorization

    Roadmap Linear Network Hypothesis Basic Matrix Factorization Stochastic Gradient Descent Summary of ...

  6. Non-negative Matrix Factorization 非负矩阵分解

    著名的科学杂志<Nature>于1999年刊登了两位科学家D.D.Lee和H.S.Seung对数学中非负矩阵研究的突出成果.该文提出了一种新的矩阵分解思想――非负矩阵分解(Non-nega ...

  7. 【RS】Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering - 基于拉普拉斯分布的稀疏概率矩阵分解协同过滤

    [论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering  ...

  8. 【RS】List-wise learning to rank with matrix factorization for collaborative filtering - 结合列表启发排序和矩阵分解的协同过滤

    [论文标题]List-wise learning to rank with matrix factorization for collaborative filtering   (RecSys '10 ...

  9. 【RS】Matrix Factorization Techniques for Recommender Systems - 推荐系统的矩阵分解技术

    [论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer So ...

随机推荐

  1. 【Java】 实现一个简单文件浏览器(1)

    学习Java的Swing的时候写的一个超简单文件浏览器 效果如图: 项目结构: 这里面主要用了两个控件,JTree和JTable 下面先说下左侧的文件树如何实现: 首先是FileTree类,继承于JT ...

  2. Penalty

    Penalty时间限制:1000 ms | 内存限制:65535 KB难度:2描述As is known to us, the penalty is vitally important to comp ...

  3. [LeetCode]题解(python):006-ZigZag Conversion

    题目来源: https://leetcode.com/problems/zigzag-conversion/ 题意分析: 这道题目是字符串处理的题目.输入一个字符串和一个数字,将字符串填入倒Z形输入字 ...

  4. linux所有信息查询网址

  5. JAVA GUI学习 - JSplitPane分屏组件学习

    public class JSplitPaneKnow extends JFrame { JSplitPane jSplitPane; JPanel jPanelRed; JPanel jPanelB ...

  6. HDOJ 2102 A计划(bfs)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2102 思路分析: <1>搜索方法分析:由于需要寻找最短的找到公主的路径,所以采用bfs搜索 ...

  7. Flex 事件机制

    使用ActionScript的单击事件示例 <?xml version="1.0" encoding="utf-8"?> <s:Applica ...

  8. Linux 内核的编译系统

    Linux  的编译使用 GNU make 工具来检查整个系统的文件和调用 gcc 工具以及脚本完毕编译源码生成 image 等操作.要了解整个编译系统,我们首先要了解 Linux 内核的 Makef ...

  9. mybatis级联查询

    1.定义四个实体.User   Role    Privilege   Resource,他们之间的对于关系为 2.需求:我通过用户名username查找出该用户对应的角色以及角色对应的权限和资源 3 ...

  10. 用Aspose.Cells控件读取Excel

    Aspose是一个很强大的控件,可以用来操作word,excel,ppt等文件,用这个控件来导入.导出数据非常方便.其中Aspose.Cells就是用来操作Excel的,功能有很多.我所用的是最基本的 ...