主要参考:

http://www.shido.info/lisp/scheme7_e.html

Function fact that calculates factorials.

(define (fact n)
(if (= n 1)
1
(* n (fact (- n 1)))))

(fact 5) is calculated like as follows:

(fact 5)
⇒ 5 * (fact 4)
⇒ 5 * 4 * (fact 3)
⇒ 5 * 4 * 3 * (fact 2)
⇒ 5 * 4 * 3 * 2 * (fact 1)
⇒ 5 * 4 * 3 * 2 * 1
⇒ 5 * 4 * 3 * 2
⇒ 5 * 4 * 6
⇒ 5 * 24
⇒ 120

(fact 5) calls (fact 4)(fact 4) calls (fact 3), then finally (fact 1) is called. (fact 5)(fact 4) ,.., and (fact 1) are allocated at different memory spaces and(fact i) stays there until (fact (- i 1)) returns a value, which wastes the memory space and takes more calculation time because of the overhead of function call.

However, recursive functions can express repetition in a simple manner. Further as lists are defined recursively, lists and recursive functions fit together. For instance, a function that makes all list items twice is defined like as follows. The function should return an empty list if the argument is an empty list to terminate the calculation.

(define (list*2 ls)
(if (null? ls)
'()
(cons (* 2 (car ls))
(list*2 (cdr ls)))))

3. Tail Recursive

Ordinary recursive function is not efficient because of wasting memory and function call overhead. On the contrary, tail recursive functions include the result as argument and returns it directory when the calculation finishes. Especially, as Scheme specification requires conversion of a tail recursive to a loop, there is no function call overhead.

[code 2] shows a tail recursive version of function fact shown in [code 1].

[code 2] fact-tail, tail recursive version of fact

(define (fact-tail n)
(fact-rec n n)) (define (fact-rec n p)
(if (= n 1)
p
(let ((m (- n 1)))
(fact-rec m (* p m)))))
fact-tail calculates factorial like as follows:
(fact-tail 5)
⇒ (fact-rec 5 5)
⇒ (fact-rec 4 20)
⇒ (fact-rec 3 60)
⇒ (fact-rec 2 120)
⇒ (fact-rec 1 120)
⇒ 120
As fact-rec does not wait the result of other functions, it disappears from the memory space when it finishes. The calculation proceeds by changing argument of fact-rec, which is basically the same as loop. As mentioned previously, as Scheme convert a tail recursive to a loop, Scheme can do repetition without syntax for looping.

4. Named let

The named let is available to express loop. [code 3] shows a function fact-let that calculates factorials using named let. The fact-let uses a named let expression (loop), instead of fact-rec shown in [code 2]. First it initializes parameters (n1p) with n at the line marked with ; 1. These parameters are updated at the line marked with ; 2 after each cycle: Subtracting n1 by one and multiplying p by (n1-1)

A named let is a conventional way to express loops in Scheme.

[code 3]

(define (fact-let n)
(let loop((n1 n) (p n)) ; 1
(if (= n1 1)
p
(let ((m (- n1 1)))
(loop m (* p m)))))) ; 2

5. letrec

While it is similar to the named let, a name defined by letrec can refer itself in its definition. The letrec syntax is used to define complicated recursive functions. [code 4] shows a letrec version of fact.

[code 4]

(define (fact-letrec n)
(letrec ((iter (lambda (n1 p)
(if (= n1 1)
p
(let ((m (- n1 1)))
(iter m (* p m))))))) ; *
(iter n n)))
As shown at the line of ; *, the local variable iter can refer itself in the definition of iter. Syntax letrec is a conventional way to define local functions.

scheme递归的更多相关文章

  1. Teach Yourself Scheme in Fixnum Days 6 recursion递归

    A procedure body can contain calls to other procedures, not least itself: (define factorial (lambda ...

  2. Scheme中一些函数在C++里面的实现与吐槽

          最终我失败了,这是显而意见,我试图在一个很看重类型是什么的语言中实现无类型操作,事实上,哪怕我实现了基本的cons,car,cdr,list后面的代码也无法写下去.比如说list-n,根据 ...

  3. 与Scheme共舞

    发表在<程序猿>2007年7月刊上.不log上写帖子不用考虑版面限制,所以这里的帖子比发表的啰嗦点.赵健平编辑,Jacky,和刘未鹏都给了我非常多帮助,在这里一并谢了.免费的Scheme实 ...

  4. 递归转手工栈处理的一般式[C语言]

    是任意形式的递归,是化解的一般式. 主题所谓的“递归调用化解为栈处理”,意思是,将递归函数调用化解为“一个由stack_push stack_pop stack_top等函数调用组成的循环式子”.这里 ...

  5. MIT scheme入门使用

    在win7下可安装MIT-GUN scheme, 点开后有两个界面:一个交互式命令行界面:一个Edwin界面.    在命令行界面按Ctrl-G可以开始输入.在Edwin界面,输入完整命令后按Ctrl ...

  6. scheme Continuation

    Continuation Pass Style在函数式编程(FP)中有一种被称为Continuation Passing Style(CPS)的风格.在这种风格的背后所蕴含的思想就是将处理中可变的一部 ...

  7. 递归——CPS(一)

    程序中为什么需要栈stack? 普通的程序中,接触到子程序和函数的概念,很直观地,调用子程序时,会首先停止当前做的事情,转而执行被调用的子程序,等子程序执行完成后,再捡起之前挂起的程序,这有可能会使用 ...

  8. Scheme实现二叉查找树及基本操作(添加、删除、并、交)

    表转化成平衡二叉树 其中有一种分治的思想. (define (list->tree elements) (define (partial-tree elts n) (if (= n 0) (co ...

  9. Scheme r5rs letrec的用法

    说明,这是r5rs的用法. (letrec ((<variable> <init>) ...) <body>) 假设((<variable> <i ...

随机推荐

  1. Eclipse标准版安装J2EE

    虽然有Eclipse IDE for Java EE Developers,已经包含了j2ee的插件,但有时我们需要在标准版上安装插件来达到开发j2ee的功能. 安装 Java EE 插件:  * 依 ...

  2. Thinkpad E430+CentOS 6.4+ linux-3.10.12内核网卡驱动(无线+有线)配置

    配置并编译安装内核模块和内核后,解压附件 firmware.tar.bz2,拷贝其中的rtlwifi文件夹到/lib/firmware下,然后 执行装载内核模块命令: sudo modprobe rt ...

  3. 关于Yeoman使用的总结

    Yeoman由三部分组成 Yo 用于项目构建. Grunt 用于项目管理,任务制定. Bower 用于项目依赖管理. 经过一段时间的使用,对这些东西有了一些个人总结: 总体上说这些内容学习曲线略高,不 ...

  4. PHP mail详细示例

    From:http://php.net/manual/zh/function.mail.php Example #1 Sending mail. Using mail() to send a simp ...

  5. for添加用户

    #!/bin/bash #接受一个参数: #add: 添加用户user1..user10 #del: 删除用户user1..user10 #其它:退出 #定义变量 ADD=add DEL=del #判 ...

  6. CREATE PROCEDURE

    1 CREATE PROCEDURE(创建) CREATE PROCEDURE存储过程名(參数列表) BEGIN SQL语句代码块 END 注意: 由括号包围的參数列必须总是存在.假设没有參数,也该使 ...

  7. qemu-kvm-1.1.0源代码中关于迁移的代码分析

    这篇文档基于qemu-kvm-1.1.0源代码进行分析. 首先,源代码中的hmp-commands.hx文件里有下面内容: { .name = "migrate",/* 在moni ...

  8. vim 快捷键大全

    一.移动光标 1.左移h.右移l.下移j.上移k 2.向下翻页ctrl + f,向上翻页ctrl + b 3.向下翻半页ctrl + d,向上翻半页ctrl + u 4.移动到行尾$,移动到行首0(数 ...

  9. [HeadFirst-HTMLCSS学习笔记][第十三章表格]

    表格 -table 块 tr 行 table row th 表头 table head td 表数据 table data; caption 表格标题 <table> <captio ...

  10. sql service重置自动增长字段数字的方法

    1.--SQL表重置自增长字段(不删除表的数据) DBCC CHECKIDENT('表名', RESEED, 起始数) 2.--删除表数据的同时,重置自动增长字段 truncate table 表名