点击打开链接

//求SUM(gcd(i,n), 1<=i<=n)
/*
g(n)=gcd(i,n),根据积性定义g(mn)=g(m)*g(n)(gcd(m,n)==1)
所以gcd(i,n)是积性的,所以f(n)=sum(gcd(i,n))是积性的,
f(n)=f(p1^a1*p2^a2*...*pn^an)=f(p1^a1)*f(p2^a2)*..*f(pn^an)
求f(p1^a1)就可以了,设d为p1^a1的一个因子,gcd(i,n)的个数为phi(n/d)
(gcd(i,n/d)==1,符合欧拉函数)
p1^a1有a1+1个因子1,p1,p1^2,...,p1^a1
f(p1^a1)=phi(p1^a1)+p1*phi(p1^(a1-1))+..+p1^(a1-1)*phi(p1)+p1^a1*phi(1)
=p1^a1*(1+a1*(1-1/p1))
f(n)=n*(1+a1*(1-1/p1))*(1+a2*(1-1/p2))*..*(1+an*(1-1/pn)); */
#include"stdio.h"
#include"string.h"
#include"math.h"
typedef __int64 LL;
int main()
{
int i;
int n,a;
LL ans;
int b;
while(scanf("%d",&n)!=-1)
{
ans=n;
b=sqrt(1.0*n);
for(i=2;i<=b;i++)
{
if(n%i==0)
{
a=0;
while(n%i==0)
{
n/=i;
a++;
}
ans=ans+ans*a*(i-1)/i;
}
}
if(n!=1)ans=ans+ans*(n-1)/n;
printf("%I64d\n",ans);
}
return 0;
}

poj 2480 (欧拉函数应用)的更多相关文章

  1. POJ 2407 (欧拉函数)

    题目链接: http://poj.org/problem?id=2407 题目大意:求小于n且与n互质的正整数个数. 解题思路: 欧拉函数=小于n且与n互质的正整数个数. 公式=n*(1-1/P1)* ...

  2. poj 2407 欧拉函数裸题

    http://poj.org/problem?id=2407 题意:多组数据,每次输入一个数 ,求这个数的欧拉函数 int euler_phi(int n){//单个欧拉函数 int m=(int)s ...

  3. POJ 2478 欧拉函数打表的运用

    http://poj.org/problem?id=2478 此题只是用简单的欧拉函数求每一个数的互质数的值会超时,因为要求很多数据的欧拉函数值,所以选用欧拉函数打表法. PS:因为最后得到的结果会很 ...

  4. POJ 3090 欧拉函数

    求一个平面内可见的点,其实就是坐标互质即可,很容易看出来或者证明 所以求对应的欧拉函数即可 #include <iostream> #include <cstdio> #inc ...

  5. Relatives POJ - 2407 欧拉函数

    题意: 给你一个正整数n,问你在区间[1,n)中有多少数与n互质 题解: 1既不是合数也不是质数(1不是素数) 互质是公约数只有1的两个整数,叫做互质整数.公约数只有1的两个自然数,叫做互质自然数 所 ...

  6. POJ 3090 (欧拉函数) Visible Lattice Points

    题意: UVa 10820 这两个题是同一道题目,只是公式有点区别. 给出范围为(0, 0)到(n, n)的整点,你站在原点处,问有多少个整点可见. 对于点(x, y), 若g = gcd(x, y) ...

  7. 找新朋友 HDU - 1286 欧拉函数模板题

    题意: 求出来区间[1,n]内与n互质的数的数量 题解: 典型的欧拉函数应用,具体见这里:Relatives POJ - 2407 欧拉函数 代码: 1 #include<stdio.h> ...

  8. POJ 2480 (约数+欧拉函数)

    题目链接: http://poj.org/problem?id=2480 题目大意:求Σgcd(i,n). 解题思路: 如果i与n互质,gcd(i,n)=1,且总和=欧拉函数phi(n). 如果i与n ...

  9. poj 2480 Longge's problem [ 欧拉函数 ]

    传送门 Longge's problem Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7327   Accepted: 2 ...

  10. 【POJ 2480】Longge's problem(欧拉函数)

    题意 求$ \sum_{i=1}^n gcd(i,n) $ 给定 $n(1\le n\le 2^{32}) $. 链接 题解 欧拉函数 $φ(x)$ :1到x-1有几个和x互质的数. gcd(i,n) ...

随机推荐

  1. MongoDB 从0开始

    MongoDB https://docs.mongodb.org/manual/tutorial/install-mongodb-on-os-x/ 在Mac上安装 brew update brew i ...

  2. MFC的命令行

    一个程序,我们通过输入不同的命令行参数,就可以实现一个可执行文件,多种功能,通过命令行来控制它的行为,例如,我们在控制台的时候,就是遇到最多的,如一个exe程序,加入为test..exe,我们可以设置 ...

  3. uva 639 Don't Get Rooked 变形N皇后问题 暴力回溯

    题目:跟N皇后问题一样,不考虑对角冲突,但考虑墙的存在,只要中间有墙就不会冲突. N皇后一行只能放一个,而这题不行,所以用全图暴力放棋,回溯dfs即可,题目最多就到4*4,范围很小. 刚开始考虑放一个 ...

  4. You raise me up

    You raise me up, so I can stand on mountains;You raise me up, to walk on stormy seas;I am strong, wh ...

  5. mysql alter example

    alter table `user_movement_log` AFTER `Regionid` (在哪个字段后面添加) ) default null; //主键 ) unsigned not nul ...

  6. Java学习之基本数据类型

    基本类型,或者叫做内置类型,是JAVA中不同于类的特殊类型.它们是我们编程中使用最频繁的类型.java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化. 1. Java ...

  7. 5.7.2.4 random() 方法

    Math.random()方法返回大于等于0小于1的一个随机数.对于某些站点来说,这个方法非常实用,因为可以利用它来随机显示一些名人名言和新闻事件.套用下面的公式,就可以利用Math.random() ...

  8. 高级PHP工程师所应该具备一些技能

          很多面试,很多人员能力要求都有"PHP高级工程师的字眼",如果您真心喜欢PHP,并且您刚起步,那么我简单说说一个PHP高级工程师所应该具备的,希望给初级或已经达到中级的 ...

  9. hdu 4162 Shape Number 最小表示法

    题目链接 给一个字符串, 将它想象成一个环, 然后从环中任意一个位置断开, 求断开后字典序最小的那种情况. 直接上模板.. #include <iostream> #include < ...

  10. 【STM32学习笔记1】基于固件库的STM32_MDK工程模版

    文章包含STM32固件库介绍和工程模板搭建两方面内容. 一.STM32固件库介绍 要建立工程模板,首先要对STM32的固件库有所了解.STM32的固件可以从ST官网下载,网址为:http://www. ...