P3308-[SDOI2014]LIS【最小割】
正题
题目链接:https://www.luogu.com.cn/problem/P3308
题目大意
三个\(n\)个数字的序列\(A,B,C\)。要求删除其中某些位置\(i\)使得\(A\)的最长上升子序列至少减少\(1\)且删去位置\(B\)的权值和最小的情况下满足删去位置的\(C\)值升序排序后字典序最小。
解题思路
首先\(B\)值最小很好求,跑一遍\(LIS\)的\(dp\),然后每个点拆成两个点,然后如果\(f[x]\)转移到\(f[y]\)是最优的就建边然后跑最小割就好了。
大体和P2766 最长不下降子序列问题差不多
也就是现在我们要求字典序最小的最小割,需要利用到最小割的性质。
如果一条边\(x,y\)是可行割,那么它满足在残量网络上\(x\)到达不了\(y\)。
首先如果\(x->y\)没有满流那么肯定不是最小割,其次如果满流了但是还有一条\(x\)到\(y\)的路径,那么证明如果走这条增广路一定可以使最大流更大,所以也不是最小割。
那么这样我们就可以判断一条边是否可行了,然后需要消去其他等价边的影响,大体方法是从\(T\)到\(y\)跑一次\(dinic\),再从\(x\)到\(S\)跑一次\(dinic\)。这个操作叫退流,这样残量网络就变成了满流边\(x->y\)的残量网络了。
先跑一次\(dinic\),然后按照\(C\)值排序,从小到大判断加入边即可。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#define ll long long
using namespace std;
const ll N=710*2,inf=1e18;
struct node{
ll to,next,w;
}a[N*N];
ll T,n,tot,ls[N],dep[N],A[N],B[N],C[N],f[N],p[N];
vector<ll> prt;queue<ll> q;
void addl(ll x,ll y,ll w){
a[++tot].to=y;a[tot].next=ls[x];ls[x]=tot;a[tot].w=w;
a[++tot].to=x;a[tot].next=ls[y];ls[y]=tot;a[tot].w=0;
}
bool bfs(ll s,ll t){
while(!q.empty())q.pop();q.push(s);
memset(dep,0,sizeof(dep));dep[s]=1;
while(!q.empty()){
ll x=q.front();q.pop();
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(dep[y]||!a[i].w)continue;
dep[y]=dep[x]+1;
if(y==t)return 1;
q.push(y);
}
}
return 0;
}
ll dinic(ll x,ll t,ll flow){
if(x==t)return flow;
ll rest=0,k;
for(ll i=ls[x];i;i=a[i].next){
ll y=a[i].to;
if(dep[x]+1!=dep[y]||!a[i].w)continue;
rest+=(k=dinic(y,t,min(flow-rest,a[i].w)));
a[i].w-=k;a[i^1].w+=k;
if(rest==flow)return flow;
}
if(!rest)dep[x]=0;
return rest;
}
bool cmp(ll x,ll y)
{return C[x]<C[y];}
signed main()
{
scanf("%lld",&T);
while(T--){
memset(ls,0,sizeof(ls));tot=1;
scanf("%lld",&n);
for(ll i=1;i<=n;i++)scanf("%lld",&A[i]);
for(ll i=1;i<=n;i++)scanf("%lld",&B[i]);
for(ll i=1;i<=n;i++)scanf("%lld",&C[i]);
ll maxs=0,s=2*n+1,t=s+1;
for(ll i=1;i<=n;i++){
f[i]=1;p[i]=i;
for(ll j=1;j<i;j++)
if(A[i]>A[j])f[i]=max(f[i],f[j]+1);
maxs=max(maxs,f[i]);
}
for(ll i=1;i<=n;i++){
if(f[i]==1)addl(s,i,inf);
if(f[i]==maxs)addl(i+n,t,inf);
addl(i,i+n,B[i]);
for(ll j=i+1;j<=n;j++)
if(A[i]<A[j]&&f[i]+1==f[j])
addl(i+n,j,inf);
}
ll ans=0;prt.clear();
while(bfs(s,t))
ans+=dinic(s,t,inf);
printf("%lld ",ans);
sort(p+1,p+1+n,cmp);
for(ll i=1;i<=n;i++){
ll x=p[i];
if(bfs(x,x+n))continue;
while(bfs(t,x+n))dinic(t,x+n,inf);
while(bfs(x,s))dinic(x,s,inf);
prt.push_back(x);
}
printf("%lld\n",prt.size());
sort(prt.begin(),prt.end());
for(ll i=0;i<prt.size();i++)
printf("%lld ",prt[i]);
putchar('\n');
}
return 0;
}
P3308-[SDOI2014]LIS【最小割】的更多相关文章
- BZOJ.3532.[SDOI2014]LIS(最小割ISAP 退流)
BZOJ 洛谷 \(LIS\)..经典模型? 令\(f_i\)表示以\(i\)结尾的\(LIS\)长度. 如果\(f_i=1\),连边\((S,i,INF)\):如果\(f_i=\max\limits ...
- P3308 [SDOI2014]LIS(最小割+退流)
传送门 设\(f[i]\)为以\(i\)结尾的最长上升子序列.可以考虑建这样一张图,对于所有的\(i<j,f[j]=f[i+1]\)连边\((i,j)\),\(f[i]=1\)的话连边\((S, ...
- 3532: [Sdoi2014]Lis 最小字典序最小割
3532: [Sdoi2014]Lis Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 865 Solved: 311[Submit][Status] ...
- 【BZOJ-3532】Lis 最小割 + 退流
3532: [Sdoi2014]Lis Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 704 Solved: 264[Submit][Status] ...
- hdu3739 Anti LIS[最小割]
长度为 n≤1000 的数列 ai,其中最长上升子序列的长度为 s.至少删去多少数使得最长上升子序列的长度小于 s. 其实这题和那个求有多少不重叠LIS是一样答案的. 先放个图. 图丑别说我. 原网络 ...
- 洛谷$P3308\ [SDOI2014]LIS$ 网络流
正解:网络流 解题报告: 传送门$QwQ$ 恩先不考虑关于那个附加属性的限制,考虑这题怎么做? 首先这题从名字开始就让人忍不住联想起网络流24题里的那个最长不下降子序列?于是同样考虑预处理一个$f$呗 ...
- [bzoj3532][Sdoi2014]Lis——拆点最小割+字典序+退流
题目大意 给定序列A,序列中的每一项Ai有删除代价Bi和附加属性Ci.请删除若 干项,使得4的最长上升子序列长度减少至少1,且付出的代价之和最小,并输出方案. 如果有多种方案,请输出将删去项的附加属性 ...
- bzoj千题计划141:bzoj3532: [Sdoi2014]Lis
http://www.lydsy.com/JudgeOnline/problem.php?id=3532 如果没有字典序的限制,那么DP拆点最小割即可 加上字典序的限制: 按c从小到大枚举最小割边集中 ...
- BZOJ3532 : [Sdoi2014]Lis
f[i]表示以i为结尾的LIS长度 对于所有f[i]=1的,由S向i连边 对于所有f[i]=maxf的,由i向T连边 对于j<i,a[j]<a[i],且f[j]+1=f[i]的,j向i连边 ...
随机推荐
- SpringBoot快速搭建流程
创建一个新项目 使用maven创建一个新项目 给定项目名称.finsh完成创建 跑起来SpringBoot 引入依赖parent > SpringBoot父级依赖,spring-boot-sta ...
- jQuery中的筛选(六):first()、last()、has()、is()、find()、siblings()等
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"> <html> <hea ...
- 转:JAVA 参数传递
转自:http://blog.sina.com.cn/s/blog_5dd380b90100bvel.html 网络上有太多关于JAVA参数传递是传值还是传引用的讨论,其实大多是概念不清,混淆视听.从 ...
- spring支持的Bean的作用域
Sigleton:单例模式,在整个Spring IoC容器中,使用Sigleton定义Bean将有一个实例 prototype:原型模式,每次通过容器的getBean方法获取propertype都将产 ...
- Mybatis原理和代码剖析
参考资料(官方) Mybatis官方文档: https://mybatis.org/mybatis-3/ Mybatis-Parent : https://github.com/mybatis/par ...
- configparser读
#-*-coding:utf-8-*-__author__ = "logan.xu"import configparserconf = configparser.ConfigPar ...
- Linux下SSH以及SSH秘钥
一.基于秘钥方式实现远程连接 第一步:创建密钥对(在管理端服务器上操作) 中间的输入项可以直接回车 ssh-keygen -t dsa 第二步:分发公钥(在管理端服务器执行) 这个步骤需要输入一个ye ...
- Python常见问题 - 写入数据到 excel 报 ValueError: invalid literal for int() with base 10 错误
背景 在上写入数据到excel中,报了以下错误 出现原因 对于写入excel场景下出现该错误的话,很大概率是写入数据的单元格原本的数据格式有问题 解决方法 清理掉单元格的旧数据,然后再写入就可以了
- Selenium系列(十八) - Web UI 自动化基础实战(5)
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识, ...
- Storm近年的发展
storm作为第一款大数据领域的流式计算引擎,在2013年推出之后风头一时无二.后续虽然有spark streaming也作为流式计算的引擎,但storm依然在流式计算的江湖占有稳定的地位.直到201 ...