正题

题目链接:https://www.luogu.com.cn/problem/CF666E


解题思路

给出一个串\(S\)和\(n\)个串\(T_i\)。\(m\)次询问\(S_{a\sim b}\)在\(T_{l\sim r}\)中出现的最多次数并且输出这个串的编号。

\(1\leq |s|\leq 5\times 10^5,\sum T_i\leq 5\times 10^4,1\leq m\leq 5\times 10^5\)


解题思路

把\(S\)和\(T\)丢一起跑一个广义\(SAM\)。

两个串包含当且仅当他们在\(SAM\)上对应节点是父子,所以直接对于每个节点开一个线段树,然后\(T\)的每个位置对应编号加一。

对于询问\(S\)子串直接倍增跳到对应位置然后用线段树合并上来的东西求答案就好了。


code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+2e5+10,S=19;
int answ,ansv;
struct SegTree{
int cnt,w[N*20],v[N*20],ls[N*20],rs[N*20];
void PushUp(int x,int L,int R){
w[x]=-1;
if(w[ls[x]]>w[x])w[x]=w[ls[x]],v[x]=max(v[ls[x]],L);
if(w[rs[x]]>w[x])w[x]=w[rs[x]],v[x]=v[rs[x]];
return;
}
void Change(int &x,int L,int R,int pos){
if(!x)x=++cnt;
if(L==R){w[x]++;v[x]=L;return;}
int mid=(L+R)>>1;
if(pos<=mid)Change(ls[x],L,mid,pos);
else Change(rs[x],mid+1,R,pos);
PushUp(x,L,R);return;
}
void Ask(int x,int L,int R,int l,int r){
if(!x){if(answ<0)answ=0,ansv=l;return;}
if(L==l&&R==r){if(answ<w[x])answ=w[x],ansv=v[x];return;}
int mid=(L+R)>>1;
if(r<=mid)Ask(ls[x],L,mid,l,r);
else if(l>mid)Ask(rs[x],mid+1,R,l,r);
else Ask(ls[x],L,mid,l,mid),Ask(rs[x],mid+1,R,mid+1,r);
}
int Merge(int x,int y,int L,int R){
if(!x||!y)return x+y;int p=++cnt;
if(L==R){w[p]=w[x]+w[y];v[p]=L;return p;}
int mid=(L+R)>>1;
ls[p]=Merge(ls[x],ls[y],L,mid);
rs[p]=Merge(rs[x],rs[y],mid+1,R);
PushUp(p,L,R);return p;
}
}T;
struct node{
int to,next;
}a[N];
int n,m,l,tot,f[N][S+1],rt[N],ls[N];
int cnt,len[N],ch[N][26],fa[N],pos[N];
char s[N];
void addl(int x,int y){
a[++tot].to=y;
a[tot].next=ls[x];
ls[x]=tot;return;
}
int Insert(int p,int c){
if(ch[p][c]){
int q=ch[p][c];
if(len[p]+1==len[q])return q;
else{
int nq=++cnt;len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q];fa[q]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
return nq;
}
}
int np=++cnt;
len[np]=len[p]+1;
for(;p&&!ch[p][c];p=fa[p])ch[p][c]=np;
if(!p)fa[np]=1;
else{
int q=ch[p][c];
if(len[p]+1==len[q])fa[np]=q;
else{
int nq=++cnt;len[nq]=len[p]+1;
memcpy(ch[nq],ch[q],sizeof(ch[nq]));
fa[nq]=fa[q];fa[q]=fa[np]=nq;
for(;p&&ch[p][c]==q;p=fa[p])ch[p][c]=nq;
}
}
return np;
}
void dfs(int x){
for(int i=ls[x];i;i=a[i].next){
int y=a[i].to;
f[y][0]=x;dfs(y);
rt[x]=T.Merge(rt[x],rt[y],1,n);
}
return;
}
int GetPos(int l,int r){
int x=pos[r];
for(int i=S;i>=0;i--)
if(len[f[x][i]]>=r-l+1)x=f[x][i];
return x;
}
int main()
{
scanf("%s",s+1);
l=strlen(s+1);cnt=1;
for(int i=1,x=1;i<=l;i++){
x=Insert(x,s[i]-'a');
pos[i]=x;
}
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%s",s+1);
int x=1,l=strlen(s+1);
for(int j=1;j<=l;j++){
x=Insert(x,s[j]-'a');
T.Change(rt[x],1,n,i);
}
}
for(int i=2;i<=cnt;i++)addl(fa[i],i);
dfs(1);
for(int j=1;j<=S;j++)
for(int i=1;i<=cnt;i++)
f[i][j]=f[f[i][j-1]][j-1];
scanf("%d",&m);
while(m--){
int a,b,l,r;
scanf("%d%d%d%d",&l,&r,&a,&b);
int x=GetPos(a,b);answ=-1;ansv=0;
T.Ask(rt[x],1,n,l,r);
printf("%d %d\n",ansv,answ);
}
return 0;
}

CF666E-Forensic Examination【广义SAM,线段树合并】的更多相关文章

  1. CodeForces - 666E: Forensic Examination (广义SAM 线段树合并)

    题意:给定字符串S,然后M个字符串T.Q次询问,每次给出(L,R,l,r),问S[l,r]在L到R这些T字符串中,在哪个串出现最多,以及次数. 思路:把所有串建立SAM,然后可以通过倍增走到[l,r] ...

  2. CF666E Forensic Examination 广义SAM、线段树合并、倍增、扫描线

    传送门 朴素想法:对\(M\)个匹配串\(T_1,...,T_M\)建立广义SAM,对于每一次询问,找到这个SAM上\(S[pl...pr]\)对应的状态,然后计算出对于每一个\(i \in [l,r ...

  3. 【Codeforces666E】Forensic Examination 后缀自动机 + 线段树合并

    E. Forensic Examination time limit per test:6 seconds memory limit per test:768 megabytes input:stan ...

  4. CF204E-Little Elephant and Strings【广义SAM,线段树合并】

    正题 题目链接:https://www.luogu.com.cn/problem/CF204E 题目大意 \(n\)个字符串的一个字符串集合,对于每个字符串求有多少个子串是这个字符串集合中至少\(k\ ...

  5. YbtOJ#532-往事之树【广义SAM,线段树合并】

    正题 题目链接:https://www.ybtoj.com.cn/problem/532 题目大意 给出\(n\)个点的一个\(Trie\)树,定义\(S_x\)表示节点\(x\)代表的字符串 求$$ ...

  6. cf666E. Forensic Examination(广义后缀自动机 线段树合并)

    题意 题目链接 Sol 神仙题Orz 后缀自动机 + 线段树合并 首先对所有的\(t_i\)建个广义后缀自动机,这样可以得到所有子串信息. 考虑把询问离线,然后把\(S\)拿到自动机上跑,同时维护一下 ...

  7. CF666E Forensic Examination 广义后缀自动机_线段树合并_树上倍增

    题意: 给定一个串 $S$ 和若干个串 $T_{i}$每次询问 $S[pl..pr]$ 在 $Tl..Tr$ 中出现的最多次数,以及出现次数最多的那个串的编号. 数据范围: 需要离线 题解:首先,很常 ...

  8. CF666E Forensic Examination——SAM+线段树合并+倍增

    RemoteJudge 题目大意 给你一个串\(S\)以及一个字符串数组\(T[1...m]\),\(q\)次询问,每次问\(S\)的子串\(S[p_l...p_r]\)在\(T[l...r]\)中的 ...

  9. CF666E Forensic Examination SAM+线段树合并+前缀树倍增

    $ \color{#0066ff}{ 题目描述 }$ 给你一个串\(S\)以及一个字符串数组\(T[1..m]\),\(q\)次询问,每次问\(S\)的子串\(S[p_l..p_r]\)在\(T[l. ...

随机推荐

  1. Nginx-出现-403-Forbidden

    步骤一: 检查目录权限.权限不足的就加个权限吧. 例子:chmod -R 755 / var/www 步骤二: 打开nginx.conf 例子:vim /etc/nginx/nginx.conf 把 ...

  2. explorer.exe

    explorer.exe是Windows程序管理器或者文件资源管理器, 它用于管理Windows图形壳,包括桌面和文件管理,删除该程序会导致Windows图形界面无法使用. 终止: taskkill ...

  3. mysql优化: 内存表和临时表

    由于直接使用临时表来创建中间表,其速度不如人意,因而就有了把临时表建成内存表的想法.但内存表和临时表的区别且并不熟悉,需要查找资料了.一开始以为临时表是创建后存在,当连接断开时临时表就会被删除,即临时 ...

  4. 【ArcGIS】 设置管段的流向

    在排水管网或者燃气管网中对管段进行几何网络分析,常常用到设置管段流向,一般有三种方法: 1,有流向字段的,直接进行唯一值渲染, 2,没有流向字段的需要建立几何网络, 2.1 在几何网络存在的情况下,设 ...

  5. jquery validate 如何校验多个相同name

    在表单页中有如下代码 <form> <input name="zhai"/><!-- 三个相同name的input --> <input ...

  6. mysql基础操作(一):DDL、DML

    -- 1.在命令行中开启数据库: net start mysql -- 2.在命令行中关闭数据库: net stop mysql 1.DDL语句:create.drop.alter -- 查看所有的数 ...

  7. Ubuntu中配置tomcat

    1.从网上下载的tomcat配置失败后,servername那一栏写不了,必须要删除工作空间的配置文件 sudo rm /home/{username}/workspace/.metadata/.pl ...

  8. canvas——绘制解锁图案

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. SSH无法正常连接服务器

    远程权限没有打开 #允许root登录 PermitRootLogin yes #不允许空密码登录 PermitEmptyPasswords no 远端的ssh信息有变化,本地保存的那个需要删掉 Use ...

  10. 并发编程之:JUC并发控制工具

    大家好,我是小黑,一个在互联网苟且偷生的农民工. 在上一期我们讲了Thread.join()方法和CountDownLatch,这两者都可以做到等待一个线程执行完毕之后当前线程继续执行,并且Count ...