YbtOJ#732-斐波那契【特征方程,LCT】
正题
题目链接:http://www.ybtoj.com.cn/contest/125/problem/2
题目大意
给出\(n\)个点的一棵树,以\(1\)为根,每个点有点权\(a_i\)。要求支持\(m\)次操作
- 修改一个修改一个节点的父节点
- 修改一条路径的权值为\(w\)
- 给出\(u\)询问\(Fbi(a_u)\)
- 给出\(u,v\),将路径\(u->v\)的点权排列好后设为\(b\)求
\]
其中\(Fbi(i)\)表示第\(i\)个斐波那契数。输出答案模\(998244353\)的值
\(1\leq n,m\leq 10^5,a_i,w\in[1,10^9]\)
解题思路
嗯这个斐波那契很麻烦,可以考虑一些用特征方程\(1-x-x^2=0\),可以得到斐波那契的通项公式
\]
为了方便上面\(\frac{\sqrt 5\pm 1}{2}\)分别记为\(X_0,X_1\)。
那么如果设\(c_i=X_0^{a_i},d_i=X_1^{a_i}\)的话我们要求的就是
\]
这个好像看起来好维护一点,不过首先我们要解决这个\(\sqrt 5\)的问题,因为其实\(\sqrt 5\)在模\(998244353\)意义下是没有值的,我们不能直接用二次剩余带入数字。
考虑维护一个类似于多项式的东西,每个数字记为二元组\((a,b)=a\sqrt 5+b\)。加减乘都很好搞,除法的话需要推导一下,
\]
\]
\]
解出来
\]
这样四则运算都搞定了,可以开始考虑如何在\(LCT\)上面维护了。
类似线段树的,设\(pro\)表示所有数乘积,\(pre/suf\)表示所有前/后缀乘积和,\(ans\)表示我们维护的答案,那么就可以合并两个东西了。\(LCT\)维护的时候顺便把单个的节点也合并进去就好了。
然后还剩下一个最麻烦的东西就是树链修改的时候我们需要快速算出连续\(x\)个\(u\)的信息。
\(pro\)很好搞就是\(u^x\),\(suf\)和\(pre\)就是一个简单的等比数列求和,上通项公式就好了。
\(ans\)比较麻烦,考虑每个\(u^i\)的个数答案就是
\]
\]
这样就可以在\(log\)时间复杂度以内合并了。
然后答案\(0\)次项一定是\(0\)的,所以输出\(\sqrt 5\)的项就好了。
时间复杂度\(O(n\log^2 n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<stack>
#define ll long long
using namespace std;
const ll P=998244353,N=1e5+10;
struct node{
ll a,b;//a带√5
node(ll aa=0,ll bb=0)
{a=aa;b=bb;return;}
};
ll power(ll x,ll b=P-2){
ll ans=1;x%=P;
while(b){
if(b&1)ans=ans*x%P;
x=x*x%P;b>>=1;
}
return ans;
}
const node X((P+1)/2,(P+1)/2);
node operator+(node x,node y)
{return node((x.a+y.a)%P,(x.b+y.b)%P);}
node operator-(node x,node y)
{return node((x.a-y.a)%P,(x.b-y.b)%P);}
node operator*(node x,node y)
{return node((x.a*y.b+x.b*y.a)%P,(x.b*y.b+5*x.a*y.a)%P);}
node inv(node x){
ll tmp=power(x.b*x.b-5*x.a*x.a);
return node(-x.a,x.b)*node(0,tmp);
}
node power(node x,ll b){
node ans(0,1);
while(b){
if(b&1)ans=ans*x;
x=x*x;b>>=1;
}
return ans;
}
struct Tnode{
node ans,pre,suf,pro;
};
Tnode operator+(Tnode x,Tnode y){
Tnode w;
w.ans=x.ans+y.ans+x.suf*y.pre;
w.pre=x.pre+y.pre*x.pro;
w.suf=y.suf+x.suf*y.pro;
w.pro=x.pro*y.pro;return w;
}
struct SegTree{
ll fa[N],t[N][2],siz[N];
Tnode w[N];node v[N],lazy[N];
bool r[N],hlz[N];stack<ll> s;
bool Nroot(ll x)
{return fa[x]&&(t[fa[x]][0]==x||t[fa[x]][1]==x);}
bool Direct(ll x)
{return t[fa[x]][1]==x;}
void Rev(ll x)
{swap(t[x][0],t[x][1]);swap(w[x].pre,w[x].suf);r[x]^=1;return;}
void PushUp(ll x){
siz[x]=siz[t[x][0]]+siz[t[x][1]]+1;
w[x]=(Tnode){v[x],v[x],v[x],v[x]};
if(t[x][0])w[x]=w[t[x][0]]+w[x];
if(t[x][1])w[x]=w[x]+w[t[x][1]];
return;
}
void Updata(ll x,node u){
ll s=siz[x];lazy[x]=v[x]=u;
node tmp=inv(node(0,1)-u);
hlz[x]=1; w[x].pro=power(u,s);
w[x].pre=w[x].suf=(u-w[x].pro*u)*tmp;
w[x].ans=(node(0,s)-w[x].pre)*u*tmp;
return;
}
void PushDown(ll x){
if(hlz[x]){
if(t[x][0])Updata(t[x][0],lazy[x]);
if(t[x][1])Updata(t[x][1],lazy[x]);
hlz[x]=0;
}
if(!r[x])return;
Rev(t[x][0]);Rev(t[x][1]);
r[x]=0;return;
}
void Rotate(ll x){
ll y=fa[x],z=fa[y];
ll xs=Direct(x),ys=Direct(y);
ll w=t[x][xs^1];
if(Nroot(y))t[z][ys]=x;
t[x][xs^1]=y;t[y][xs]=w;
if(w)fa[w]=y;fa[y]=x;fa[x]=z;
PushUp(y);PushUp(x);return;
}
void Splay(ll x){
ll y=x;s.push(x);
while(Nroot(y))y=fa[y],s.push(y);
while(!s.empty())PushDown(s.top()),s.pop();
while(Nroot(x)){
ll y=fa[x];
if(!Nroot(y))Rotate(x);
else if(Direct(x)==Direct(y))
Rotate(y),Rotate(x);
else Rotate(x),Rotate(x);
}
return;
}
void Access(ll x){
for(ll y=0;x;y=x,x=fa[x])
Splay(x),t[x][1]=y,PushUp(x);
return;
}
void MakeRoot(ll x)
{Access(x);Splay(x);Rev(x);return;}
void Link(ll x,ll y){
MakeRoot(1);Access(x);Splay(x);
fa[t[x][0]]=0;t[x][0]=0;PushUp(x);
fa[x]=y;return;
}
ll Split(ll x,ll y){
MakeRoot(x);Access(y);Splay(y);
return (w[y].ans.a+P)%P*2%P;
}
void Change(ll x,ll y,node val){
MakeRoot(x);Access(y);Splay(y);
Updata(y,val);return;
}
}T;
ll n,m;
signed main()
{
// freopen("fibonacci.in","r",stdin);
// freopen("fibonacci.out","w",stdout);
scanf("%lld%lld",&n,&m);
for(ll i=1;i<=n;i++){
ll x;scanf("%lld",&x);
T.v[i]=power(X,x);
T.PushUp(i);
}
for(ll i=2;i<=n;i++)
scanf("%lld",&T.fa[i]);
while(m--){
ll op,u,v,w;
scanf("%lld",&op);
if(op==1){
scanf("%lld%lld",&u,&v);
T.Link(u,v);
}
else if(op==2){
scanf("%lld%lld%lld",&u,&v,&w);
T.Change(u,v,power(X,w));
}
else if(op==3){
scanf("%lld",&u);
printf("%lld\n",T.Split(u,u));
}
else if(op==4){
scanf("%lld%lld",&u,&v);
printf("%lld\n",T.Split(u,v));
}
}
return 0;
}
YbtOJ#732-斐波那契【特征方程,LCT】的更多相关文章
- 洛谷P1720 月落乌啼算钱 题解 斐波那契数列/特征方程求解
题目链接:https://www.luogu.com.cn/problem/P1720 题目描述: 给你一个公式 ,求对应的 \(F_n\) . 解题思路: 首先不难想象这是一个斐波那契数列,我们可以 ...
- 几种复杂度的斐波那契数列的Java实现
一:斐波那契数列问题的起源 13世纪初期,意大利数论家Leonardo Fibonacci在他的著作Liber Abaci中提出了兔子的繁殖问题: 如果一开始有一对刚出生的兔子,兔子的长大需要一个月, ...
- CF717A Festival Organization(第一类斯特林数,斐波那契数列)
题目大意:求 $\sum\limits_{n=l}^{r}\dbinom{f_n}{k}\bmod 10^9+7$.其中 $f_n$ 是长度为 $n$ 的 $01$ 序列中,没有连续两个或超过两个 $ ...
- Computational Complexity of Fibonacci Sequence / 斐波那契数列的时空复杂度
Fibonacci Sequence 维基百科 \(F(n) = F(n-1)+F(n-2)\),其中 \(F(0)=0, F(1)=1\),即该数列由 0 和 1 开始,之后的数字由相邻的前两项相加 ...
- [每日一题2020.06.14]leetcode #70 爬楼梯 斐波那契数列 记忆化搜索 递推通项公式
题目链接 题意 : 求斐波那契数列第n项 很简单一道题, 写它是因为想水一篇博客 勾起了我的回忆 首先, 求斐波那契数列, 一定 不 要 用 递归 ! 依稀记得当年校赛, 我在第一题交了20发超时, ...
- P5110 块速递推-光速幂、斐波那契数列通项
P5110 块速递推 题意 多次询问,求数列 \[a_i=\begin{cases}233a_{i-1}+666a_{i-2} & i>1\\ 0 & i=0\\ 1 & ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- python迭代器实现斐波拉契求值
斐波那契数列(Fibonacci sequence),又称黄金分割数列,也称为"兔子数列":F(0)=0,F(1)=1,F(n)=F(n-1)+F(n-2)(n≥2,n∈N*).例 ...
- Ural 1225. Flags 斐波那契DP
1225. Flags Time limit: 1.0 secondMemory limit: 64 MB On the Day of the Flag of Russia a shop-owner ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
随机推荐
- Linux 安装配置 NET模式网络环境配置
1.下载linux:发行版 Ubuntu REdHat centos Debain Fedora,SUSE,OpenSUSEcentos 6.xcentos 7.x在虚拟机(VmWare)上 安装l ...
- 使用HttpURLConnection多线程下载
1 import java.io.IOException; 2 import java.io.InputStream; 3 import java.io.RandomAccessFile; 4 imp ...
- mycat<三>
server.xml文件 <?xml version="1.0" encoding="UTF-8"?> <!-- - - Licensed u ...
- Mac shell 调节音量
$ osascript -e 'get volume settings' $ osascript -e 'output volume of (get volume settings)' $ osasc ...
- TCP头部格式和封装
文章目录 12.3 TCP头部和封装 12.3.1 端口号 12.3.2 序列号 12.3.3 头部长度 12.3.4 相关控制位 12.3.5 窗口大小 12.3.6 校验和 12.3.7 选项字段 ...
- VMware Vsphere 虚拟化
总体架构 主要组件: 1)ESXi 底层虚拟化层,用于将物理服务器虚拟成资源池,提供管理接口,方便其他的管理组件进行管理,其实体形态是iso文件,刻成启动光盘可直接安装在服务器裸机上: 安装在实体服务 ...
- Winform EF CodeFist方式连接数据库
直接生成ado.net 实体数据模型挺方便的,但只有一步步的手写代码才能更好的理解EF,在学习asp.net core过程中手写代码已经明白了怎么回事,但实现过程有些麻烦不知道如何记录,但Winfor ...
- ysoserial CommonsColletions2分析
ysoserial CommonsColletions2分析 前言 此文章是ysoserial中 commons-collections2 的分析文章,所需的知识包括java反射,javassist. ...
- 忘记root密码的情况下如何给指定账户开通远程访问
1.跳过验证使用root登录 net stop mysql //停止MYSQL服务 打开第一个cmd窗口,切换到mysql的bin目录,运行命令: mysqld --defaults-file=&qu ...
- [推荐]MyBatis 核心技术与面试 34 讲
MyBatis 核心技术与面试 34 讲 职业生涯中常被问到: 如何成为某方面的高手? 如何快速搞定某项技术? 我现在的水平处于什么阶段? -- 我暗暗想,我们从小学到中学到大学,经历了大考三六九.小 ...