\(\mathcal{Description}\)

  Link.

  定义 \(\{a\}\) 最长贪心严格上升子序列(LGIS) \(\{b\}\) 为满足以下两点的最长序列:

  • \(\{b\}\) 是 \(\{a\}\) 的子序列。
  • \(\{b\}\) 中任意相邻两项对应 \(\{a\}\) 中 \(a_i,a_j\),则 \(a_i<a_j\) 且不存在 \(i<k<j\),s.t. \(a_i<a_k\)。

  求给定序列 \(\{a_n\}\) 的所有长度为 \(k\) 的子区间 LGIS 长度之和。

  \(1\le k\le n\le10^6\)。

\(\mathcal{Solution}\)

  很套路地建立树模型,对于 \(i\),连向最小地使得 \(a_i<a_j\) 的 \(j\),那么 \(n\) 个结点构成一片森林。再根据 LGIS 的定义,一个结点若存在于区间,则以其子树内任意一点开头的 LGIS 的长度都会 \(+1\)。故只需要在 DFN 上维护线段树即可动态更新每个区间的答案。

  还有呢,联想到这道题,令 \(i\) 的 DFN 为 \(n-i+1\) 即可,树并不需要建出来 owo!

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>

inline int rint () {
int x = 0; char s = getchar ();
for ( ; s < '0' || '9' < s; s = getchar () );
for ( ; '0' <= s && s <= '9'; s = getchar () ) x = x * 10 + ( s ^ '0' );
return x;
} template<typename Tp>
inline void wint ( Tp x ) {
if ( x < 0 ) putchar ( '-' ), x = -x;
if ( 9 < x ) wint ( x / 10 );
putchar ( x % 10 ^ '0' );
} inline int imax ( const int a, const int b ) { return a < b ? b : a; } const int MAXN = 1e6;
int n, m, a[MAXN + 5], dfn[MAXN + 5];
int top, stk[MAXN + 5], siz[MAXN + 5]; struct SegmentTree {
int mx[MAXN << 2], tag[MAXN << 2]; inline void pushdn ( const int rt ) {
int& t = tag[rt];
if ( !t ) return ;
mx[rt << 1] += t, tag[rt << 1] += t;
mx[rt << 1 | 1] += t, tag[rt << 1 | 1] += t;
t = 0;
} inline void pushup ( const int rt ) {
mx[rt] = imax ( mx[rt << 1], mx[rt << 1 | 1] );
} inline void add ( const int rt, const int l, const int r,
const int al, const int ar ) {
if ( al <= l && r <= ar ) return ++mx[rt], ++tag[rt], void ();
int mid = l + r >> 1; pushdn ( rt );
if ( al <= mid ) add ( rt << 1, l, mid, al, ar );
if ( mid < ar ) add ( rt << 1 | 1, mid + 1, r, al, ar );
pushup ( rt );
} inline int qmax ( const int rt, const int l, const int r,
const int ql, const int qr ) {
if ( ql <= l && r <= qr ) return mx[rt];
int mid = l + r >> 1, ret = 0; pushdn ( rt );
if ( ql <= mid ) ret = imax ( ret, qmax ( rt << 1, l, mid, ql, qr ) );
if ( mid < qr ) ret = imax ( ret, qmax ( rt << 1 | 1, mid + 1, r, ql, qr ) );
return ret;
}
} sgt; int main () {
n = rint (), m = rint ();
for ( int i = 1; i <= n; ++i ) a[i] = rint (), dfn[i] = n - i + 1;
for ( int i = 1; i <= n; ++i ) {
for ( siz[i] = 1; top && a[stk[top]] < a[i]; siz[i] += siz[stk[top--]] );
stk[++top] = i;
}
for ( int i = 1; i < m; ++i ) sgt.add ( 1, 1, n, dfn[i], dfn[i] + siz[i] - 1 );
for ( int i = m; i <= n; ++i ) {
sgt.add ( 1, 1, n, dfn[i], dfn[i] + siz[i] - 1 );
wint ( sgt.qmax ( 1, 1, n, dfn[i], dfn[i - m + 1] ) );
putchar ( i ^ n ? ' ' : '\n' );
}
return 0;
}

Solution -「CF 1132G」Greedy Subsequences的更多相关文章

  1. Solution -「CF 1342E」Placing Rooks

    \(\mathcal{Description}\)   Link.   在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...

  2. Solution -「CF 1622F」Quadratic Set

    \(\mathscr{Description}\)   Link.   求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...

  3. Solution -「CF 923F」Public Service

    \(\mathscr{Description}\)   Link.   给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...

  4. Solution -「CF 923E」Perpetual Subtraction

    \(\mathcal{Description}\)   Link.   有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...

  5. Solution -「CF 1586F」Defender of Childhood Dreams

    \(\mathcal{Description}\)   Link.   定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...

  6. Solution -「CF 1237E」Balanced Binary Search Trees

    \(\mathcal{Description}\)   Link.   定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...

  7. Solution -「CF 623E」Transforming Sequence

    题目 题意简述   link.   有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...

  8. Solution -「CF 1023F」Mobile Phone Network

    \(\mathcal{Description}\)   Link.   有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...

  9. Solution -「CF 599E」Sandy and Nuts

    \(\mathcal{Description}\)   Link.   指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...

随机推荐

  1. Nacos配置管理最佳实践

    Nacos一个最常用的功能就是配置中心,在具体使用时往往是多个团队,甚至整个公司的研发团队都使用同一个Nacos服务.那么使用时如何保证配置在各个团队之间的隔离,又能保证配置管理的便捷性?下面就来介绍 ...

  2. 【刷题-LeetCode】229. Majority Element II

    Majority Element II Given an integer array of size n, find all elements that appear more than ⌊ n/3 ...

  3. 分享一个学习cesiumjs的中文社区

    在cesiumjs中文社区的时间线中我写到: 2018年10月10日 注册用户数51,日uv破100 Mark截图 2018年06月22日 上线测试 2018年06月19日 获得cesiumcn.or ...

  4. MySQL查询处理——逻辑查询处理和物理查询处理

    对于查询处理,可将其分为逻辑查询处理和物理查询处理.逻辑查询处理表示执行查询应该产生什么样的结果,而物理查询代表MySQL数据库是如何得到结果的. 逻辑查询处理 MySQL真正的执行顺序如下: (8) ...

  5. gin使用BasicAuth中间件

    package mainimport ( "github.com/gin-gonic/gin" "net/http")// 模拟一些私人数据var secret ...

  6. Redis入门及环境搭建

    一:Redis简介 Redis(Remote Dictionary Server 远程字典服务)是一个开源的(BSD许可的)内存数据结构存储,用作数据库.高速缓存和消息队列代理. Redis提供五大基 ...

  7. Iptables的命令与用法

    目录 一:iptables的用法 1.iptables简介 二:Iptables链的概念 1.那四个表,有哪些作用? 2.那五条链,运行在那些地方? 3.Iptables流程图 三:iptables的 ...

  8. python22day

    内容回顾 递归练习 sys os logging shutil 函数结束啦 今日内容 面向对象 楔子:做一个人狗大战的游戏 技能要有归属感,人是人,狗是狗,技能的函数要写在对应函数内部,闭包. 复杂的 ...

  9. 微信小程序笔记整理--入门篇。

    7-2 微信小程序入门篇 准备篇 1.登录网址,https://mp.weixin.qq.com 注册一个微信小程序. 2.获取微信小程序appid,登录自己的小程序后台,在开发者设置中获得appid ...

  10. Python数据结构之“栈”与“队列”

    栈(Stacks): ·定义:是一种只能通过访问其一端来实现的数据存储于检索的线性数据结构,具有后进先出(last in first out,LIFO)的特征 ·主要操作: 1. Stack():建立 ...