\(\mathcal{Descriprtion}\)

  Link.

  在一个含 \(n\) 个结点的有向图中,存在边 \(\lang i,i+1,0\rang\),它们不能被删除;还有边 \(\lang i,j,-1\rang~(i<j)\) 和 \(\lang i,j,1\rang~(i>j)\),删除一条边的代价为 \(a_{i,j}\)。求使得图无负环的最小删边代价和。

  \(n\le500\)。

\(\mathcal{Solution}\)

  直接将原图看做一个差分约束模型,或说把 无负环 转化成 存在从 \(1\) 到 \(n\) 的最短路。设 \(x_i\) 表示 \(1\) 到 \(i\) 的最短路,那么首先必然有 \(x_i\ge x_{i+1}\),令 \(d_i=x_{i+1}-x_i\ge0\),考虑一条可删除的 \(\lang i,j\rang\) 被 \(\{d_{n-1}\}\) 影响的情况:

  • \(\lang i,j,-1\rang\):\(x_i\ge x_j+1\),说明当 \(\sum_{k=i}^{j-1}d_k=0\) 时,此边需要删去;
  • \(\lang i,j,1\rang\):\(x_i\ge x_j-1\),说明当 \(\sum_{k=j}^{i-1}d_k\ge2\) 时,此边需要删去。

此外已证,\(d_k\in\{0,1\}\) 必然能取到最优方案。所以令 \(f(i,j)\) 表示最近一个是 \(d_i=1\),前一个是 \(d_j=1\) 时,使结点 \(1\sim i+1\) 之间的边符合要求的最小删除代价和,预处理 \(+1\) 和 \(-1\) 边删除代价的二维前缀和,枚举前驱状态 \(f(j,k)\),可做到 \(\mathcal O(n^3)\) 转移。

\(\mathcal{Code}\)

/* Clearink */

#include <cstdio>
#include <cstring> #define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) typedef long long LL; template<typename Tp>
inline Tp imax( const Tp a, const Tp b ) { return a < b ? b : a; }
template<typename Tp>
inline void chkmin( Tp& a, const Tp b ) { b < a && ( a = b ); } const int MAXN = 500;
const LL LINF = 0x3f3f3f3f3f3f3f3f;
int n;
LL wp[MAXN + 5][MAXN + 5], wn[MAXN + 5][MAXN + 5];
LL f[MAXN + 5][MAXN + 5]; inline LL negS( int a, const int b, int p, const int q ) {
a = imax( a, 1 ), p = imax( p, 1 );
return a > p || b > q ? 0 :
wn[p][q] - wn[p][b - 1] - wn[a - 1][q] + wn[a - 1][b - 1];
}
inline LL posS( int a, const int b, int p, const int q ) {
a = imax( a, 1 ), p = imax( p, 1 );
return a > p || b > q ? 0 :
wp[p][q] - wp[p][b - 1] - wp[a - 1][q] + wp[a - 1][b - 1];
} int main() {
scanf( "%d", &n );
rep ( i, 1, n ) rep ( j, 1, n ) {
if ( i < j ) scanf( "%lld", &wn[i][j] );
else if ( i > j ) scanf( "%lld", &wp[i][j] );
wn[i][j] += wn[i - 1][j] + wn[i][j - 1] - wn[i - 1][j - 1];
wp[i][j] += wp[i - 1][j] + wp[i][j - 1] - wp[i - 1][j - 1];
} LL ans = negS( 1, 1, n, n );
memset( f, 0x3f, sizeof f ), f[0][0] = 0;
rep ( i, 1, n - 1 ) rep ( j, 0, i - 1 ) {
rep ( k, 0, imax( j - 1, 0 ) ) {
chkmin( f[i][j], f[j][k] + negS( j + 1, j + 1, i, i )
+ posS( j + 2, 1, i + 1, k )
+ posS( i + 1, k + 1, i + 1, j ) );
}
chkmin( ans, f[i][j] + negS( i + 1, i + 1, n, n )
+ posS( i + 2, 1, n, j ) );
} printf( "%lld\n", ans );
return 0;
}

Solution -「AGC 036D」「AT 5147」Negative Cycle的更多相关文章

  1. Solution -「CTS 2019」「洛谷 P5404」氪金手游

    \(\mathcal{Description}\)   Link.   有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...

  2. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  3. 【翻译】西川善司的「实验做出的游戏图形」「GUILTY GEAR Xrd -SIGN-」中实现的「纯卡通动画的实时3D图形」的秘密,后篇

    http://www.4gamer.net/games/216/G021678/20140714079/     连载第2回的本回,  Arc System Works开发的格斗游戏「GUILTY G ...

  4. Android内存管理(4)*官方教程 含「高效内存的16条策略」 Managing Your App's Memory

    Managing Your App's Memory In this document How Android Manages Memory Sharing Memory Allocating and ...

  5. SSH连接时出现「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」解决办法

    用ssh來操控github,沒想到連線時,出現「WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED!」,後面還有一大串英文,這時當然要向Google大神求助 ...

  6. 「Windows MFC 」「Edit Control」 控件

    「Windows MFC 」「Edit Control」 控件

  7. 「ZJOI2019」&「十二省联考 2019」题解索引

    「ZJOI2019」&「十二省联考 2019」题解索引 「ZJOI2019」 「ZJOI2019」线段树 「ZJOI2019」Minimax 搜索 「十二省联考 2019」 「十二省联考 20 ...

  8. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  9. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

随机推荐

  1. vue3.0获取地址栏参数

    方法一 toRaw(route).query.value 方法二 router.currentRoute.value.query

  2. vue 自动生成菜单

    import constant from './const' export function getRouters (files) { let filenames = files.keys() let ...

  3. Solon Web 开发

    Solon Web 开发 一.开始 二.开发知识准备 三.打包与运行 四.请求上下文 五.数据访问.事务与缓存应用 六.过滤器.处理.拦截器 七.视图模板与Mvc注解 八.校验.及定制与扩展 九.跨域 ...

  4. manjaro20夜灯夜间模式开关

  5. node.js在Linux下执行shell命令、.sh脚本

    首先,引入子进程模块 var process = require('child_process'); 执行shell命令 调用该模块暴露出来的方法exec process.exec('shutdown ...

  6. golang中算数运算、位运算、逻辑运算、赋值运算常用方法

    package main import "fmt" var a = 21.0 var b = 5.0 //var c float64 func main() { Arithmeti ...

  7. java继承成员变量特点

    1 /* 2 * 在子父类中,成员的特点体现. 3 * 1,成员变量. 4 * 2,成员函数. 5 * 3,构造函数. 6 */ 7 8 //1, 成员变量. 9 /* 10 * 当本类的成员和局部变 ...

  8. Typecho博客支持emoji表情设置

    介绍 大家在typecho博客写文章时,很多人都喜欢使用emoji表情(比如这些图标)但是typecho的数据库类型默认不支持emoji编码,因为Emoji是一种在Unicode位于u1F601-u1 ...

  9. linux移动文件与删除文件

    目录 一:移动文件 二:删除文件 一:移动文件 移动文件相当于剪切. 格式: mv[移动文件的原路径][移动文件的新路径] 案例: 1.移动文件 案例1:将/root目录下的1.txt移动到/opt目 ...

  10. Filter+Redis解决项目之间调用的幂等性

    幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同 在项目远程调用中,如果接 ...