Li Y., Xie L., Zhang Y., Zhang R., Wang Y., Tian Q., Defending Adversarial Attacks by Correcting logits[J]. arXiv: Learning, 2019.

作者认为, adversarial samples 和 natural samples的分布是不同, 结果二者的输出logits的分布也是不同的, 那么能否通过此来还原正确的类别呢?

主要内容

思路是这样子的, 假设原本的网络为\(f(\cdot)\), natural样本\(x\)和adversarial样本\(x'\)分别得到\(z\)和\(z'\), 根据假设(发现)二者的分布是不同的. 构建一个新的判别器\(g(\cdot)\), 将\(z\)和\(z'\)作为新的输入, 自然我们希望natrual样本的\(z\)的输出还是\(g(z)=z\), 而adversarial样本的\(z'\)被转换为\(g(z')=z\). 如果能够做到, 那么\(g(\cdot)\)就成为了一个防御手段.

实验发现, 这种想法是有效的, 且效率非常高, 甚至能够提高clean accuracy !

实验

论文没有开放代码, 个人的实验结果不是很理想, 当然可能和在小数据集上跑有关系. 另外论文没有说清楚adversarial samples是如何构造的. 因为如果是单纯通过原有的网络构造对抗样本再利用\(g(\cdot)\)恢复是不可靠的, 应该在\(g \circ f\)的基础上构造.

Defending Adversarial Attacks by Correcting logits的更多相关文章

  1. Mind the Box: $\ell_1$-APGD for Sparse Adversarial Attacks on Image Classifiers

    目录 概 主要内容 Croce F. and Hein M. Mind the box: \(\ell_1\)-APGD for sparse adversarial attacks on image ...

  2. DEFENSE-GAN: PROTECTING CLASSIFIERS AGAINST ADVERSARIAL ATTACKS USING GENERATIVE MODELS

    目录 概 主要内容 Samangouei P, Kabkab M, Chellappa R, et al. Defense-GAN: Protecting Classifiers Against Ad ...

  3. Towards Deep Learning Models Resistant to Adversarial Attacks

    目录 概 主要内容 Note Madry A, Makelov A, Schmidt L, et al. Towards Deep Learning Models Resistant to Adver ...

  4. 论文阅读 | Real-Time Adversarial Attacks

    摘要 以前的对抗攻击关注于静态输入,这些方法对流输入的目标模型并不适用.攻击者只能通过观察过去样本点在剩余样本点中添加扰动. 这篇文章提出了针对于具有流输入的机器学习模型的实时对抗攻击. 1 介绍 在 ...

  5. Attacks for RL

    1. http://rll.berkeley.edu/adversarial/   Adversarial Attacks on Neural Network Policies 就是对test时候的p ...

  6. Exploring Adversarial Attack in Spiking Neural Networks with Spike-Compatible Gradient

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! arXiv:2001.01587v1 [cs.NE] 1 Jan 2020 Abstract 脉冲神经网络(SNN)被广泛应用于神经形态设 ...

  7. Adversarial Detection methods

    目录 Kernel Density (KD) Local Intrinsic Dimensionality (LID) Gaussian Discriminant Analysis (GDA) Gau ...

  8. Adversarial Examples Are Not Bugs, They Are Features

    目录 概 主要内容 符号说明及部分定义 可用特征 稳定可用特征 可用不稳定特征 标准(standard)训练 稳定(robust)训练 分离出稳定数据 分离出不稳定数据 随机选取 选取依赖于 比较重要 ...

  9. Distillation as a Defense to Adversarial Perturbations against Deep Neural Networks

    目录 概 主要内容 算法 一些有趣的指标 鲁棒性定义 合格的抗干扰机制 Nicolas Papernot, Patrick McDaniel, Xi Wu, Somesh Jha, Ananthram ...

随机推荐

  1. Hadoop入门 集群时间同步

    集群时间同步 如果服务器在公网环境(能连接外网),可以不采用集群时间同步.因为服务器会定期和公网时间进行校准. 如果服务器在内网环境,必须要配置集群时间同步,否则时间久了,会产生时间偏差,导致集群执行 ...

  2. Zookeeper之创建组,加入组,列出组成员和删除组

    public class CreateGroup implements Watcher { private static final int SESSION_TIMEOUT=5000; //ZooKe ...

  3. Spark(二十一)【SparkSQL读取Kudu,写入Kafka】

    目录 SparkSQL读取Kudu,写出到Kafka 1. pom.xml 依赖 2.将KafkaProducer利用lazy val的方式进行包装, 创建KafkaSink 3.利用广播变量,将Ka ...

  4. Scala(六)【模式匹配】

    目录 一.基本语法 二.匹配固定值 三.守卫 四.匹配类型 五.匹配集合 1.Array 2.List 3.元祖 4.对象和样例类 六.偏函数 七.赋值匹配 八.for循环匹配 一.基本语法 在匹配某 ...

  5. 容器之分类与各种测试(四)——unordered-multimap

    unordered-multiset与unordered-multimap的区别和multiset与multimap的区别基本相同,所以在定义和插入时需要注意 key-value 的类型. 例程 #i ...

  6. mystar01 nodejs MVC 公共CSS,JS设置

    mystar01 nodejs MVC gulp 项目搭建 config/express.js中定义别名 //将下载的第三方库添加到静态资源路径当中,方便访问 app.use('/jquery', e ...

  7. Nginx流量拷贝

    1. 需求 将生产环境的流量拷贝到预上线环境或测试环境,这样做有很多好处,比如: 可以验证功能是否正常,以及服务的性能: 用真实有效的流量请求去验证,又不用造数据,不影响线上正常访问: 这跟灰度发布还 ...

  8. vue引入d3

    单页面使用 cnpm install d3 --save-dev 指定版本安装 cnpm install d3@6.3.1 -S <script> import * as d3 from ...

  9. Maven项目打包成war包并启动war包运行

    1 项目打包 1.1 右键点击所需要打包的项目,点击如图所示 Maven clean,这里 Maven 会清除掉之前对这个项目所有的打包信息. 1.2进行完 Maven clean 操作后,在ecli ...

  10. windows 显示引用账户已被锁定,且可能无法登录

    今天遇到一个比较尴尬的事情,清理笔记本键盘时,在锁屏界面多次碰到enter键,在登录界面被锁定无法登录. 一开始慌了,因为没遇到过这样的问题.百度一看方法不少,便开始尝试, 有的说是重启进入安全模式, ...