零 标题:算法(leetode,附思维导图 + 全部解法)300题之(31)下一个排列

一 题目描述

二 解法总览(思维导图)

三 全部解法

1 方案1

1)代码:

// 方案1 “双指针法”。
// 通过:213 / 265 。未通过例子:[4,2,0,2,3,2,0] 。 // 技巧:“双指针”大部分适用于 “数组”(双向,向前、向后都可以走)、“链表”(只能单向的向后走)。
// 因为 “算法 与 数据结构 相适应” —— 类比生物学里的 “结构与功能相适应”。 // 思路:
// 1)2)利用 i( 范围:[l - 1, 1] )、j( 范围:[i - 1, 0] ) 双指针
// 2.1)找到符合 nums[i] > nums[j] 条件的 i、j 下标
// 2.1.1)进行 “值交换”
// 2.1.2)对 nums ,(j + 1)下标后面的数进行重排为升序
// 3)边界处理。若 此时 nums 是最大的排列,则 直接将 nums 重排为升序排列即可~
var nextPermutation = function(nums) {
// 1)状态初始化
const l = nums.length; // 2)利用 i( 范围:[l - 1, 1] )、j( 范围:[i - 1, 0] ) 双指针
for (let i = l - 1; i >= 1; i--) {
for (let j = i - 1; j >= 0; j--) {
// 2.1)找到符合 nums[i] > nums[j] 条件的 i、j 下标
if (nums[i] > nums[j]) {
// 2.1.1)进行 “值交换”
[nums[i], nums[j]] = [nums[j], nums[i]];
// 2.1.2)对 nums ,(j + 1)下标后面的数进行重排为升序
let tempList = nums.slice(j + 1);
tempList.sort((a, b) => a - b);
nums.splice(j + 1, (l - j - 1), ...tempList);
return;
}
}
} // 3)边界处理。若 此时 nums 是最大的排列,则 直接将 nums 重排为升序排列即可~
nums = nums.sort((a, b) => a -b);
};

2 方案2

1)代码:

// 方案2 “他人方案”。

// 参考:
// 1)https://leetcode-cn.com/problems/next-permutation/solution/jie-fa-hen-jian-dan-jie-shi-qi-lai-zen-yao-jiu-na-/
var nextPermutation = function(nums) {
const l = nums.length;
let i = l - 2; // 从右往左遍历拿到第一个左边小于右边的 i,此时 i 右边的数组是从右往左递增的
while (i >= 0 && nums[i] >= nums[i+1]){
i--;
} if (i >= 0){
let j = l - 1;
// 从右往左遍历拿到第一个大于nums[i]的数,因为之前nums[i]是第一个小于他右边的数,所以他的右边一定有大于他的数
while (j >= 0 && nums[j] <= nums[i]){
j--;
}
// 交换两个数
[nums[j], nums[i]] = [nums[i], nums[j]]
} // 对 i 右边的数进行交换
// 因为 i 右边的数原来是从右往左递增的,把一个较小的值交换过来之后,仍然维持单调递增特性
// 此时头尾交换并向中间逼近就能获得 i 右边序列的最小值
let left = i + 1;
let right = l - 1;
while (left < right){
[nums[left], nums[right]] = [nums[right], nums[left]]
left++
right--
}
}

31、下一个排列 | 算法(leetode,附思维导图 + 全部解法)300题的更多相关文章

  1. 34、在排序数组中查找元素的第一个和最后一个位置 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(34)在排序数组中查找元素的第一个和最后一个位置 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: / ...

  2. 35、搜索插入位置 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(35)搜索插入位置 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: // 方案1 "无视要 ...

  3. 36、有效的数独 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(36)有效的数独 前言 1)码农三少 ,一个致力于 编写极简.但齐全题解(算法) 的博主. 2)文末附赠 价值上百美刀 资料. 一 ...

  4. 32、最长有效括号 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(32)最长有效括号 一 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: // 方案1 "滑动窗 ...

  5. 33、搜索旋转排序数组 | 算法(leetode,附思维导图 + 全部解法)300题

    零 标题:算法(leetode,附思维导图 + 全部解法)300题之(33)搜索旋转排序数组 一 题目描述! 题目描述 二 解法总览(思维导图) 三 全部解法 1 方案1 1)代码: // 方案1 & ...

  6. LeetCode 31. 下一个排列 | Python

    31. 下一个排列 题目 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改, ...

  7. Java实现 LeetCode 31下一个排列

    31. 下一个排列 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许 ...

  8. Leetcode题库——31.下一个排列

    @author: ZZQ @software: PyCharm @file: nextPermutation.py @time: 2018/11/12 15:32 要求: 实现获取下一个排列的函数,算 ...

  9. Leetcode题目31.下一个排列(中等)

    题目描述: 实现获取下一个排列的函数,算法需要将给定数字序列重新排列成字典序中下一个更大的排列. 如果不存在下一个更大的排列,则将数字重新排列成最小的排列(即升序排列). 必须原地修改,只允许使用额外 ...

随机推荐

  1. SQL Server 数据库单用户模式处理

    在还原数据库bak备份文件时,由于某种原因(具体何种原因在此不进行分析)导致数据库还原后处于单用户模式,如下图: 单个用户模式导致,数据库无法打开,只能通过脚本去查询数据库内的表,然后进行查询数据,极 ...

  2. Install WSL

    Install WSL Prerequisites You must be running Windows 10 version 2004 and higher (Build 19041 and hi ...

  3. perl Encode模块的使用

    编码问题是广泛存在的,只有正确的编码才能在不同的地方正确的显示内容.而在数据的获取和转移过程中,编码经常是很需要注意的问题.perl有功能很好的编码处理模块Encode.在程序里简单的use Enco ...

  4. 【数据结构】<栈的应用>回文判断

    通过栈与队列相关内容的学习,我们知道,栈是"先进后出"的线性表,而队列是"先进先出"的线性表.可以通过构造栈与队列来实现在这一算法.将要判断的字符序列依次压栈和 ...

  5. JAVA String、StringBuffer、StringBuilder类解读

    JAVA String.StringBuffer.StringBuilder类解读 字符串广泛应用 在 Java 编程中,在 Java 中字符串属于对象,Java 提供了 String 类来创建和操作 ...

  6. linux:桌面切换

    永久更改 字符模式:multi-user.target 图形模式:graphical.target systemctl get-default #查看默认模式 systemctl set-defaul ...

  7. LeetCode:动态规划

    动态规划 动态规划永远的神 这部分主要是学习了 labuladong 公众号中对于动态规划的讲解 刷了些 leetcode 题,在此做一些记录,不然没几天就忘光光了 题目 这部分内容直接上题目了,解题 ...

  8. Golang通脉之反射

    什么是反射 官方关于反射定义: Reflection in computing is the ability of a program to examine its own structure, pa ...

  9. Beta_Scrum Meeting_0

    日期:2021年5月26日 参会人员:cy.hcc.lsc.dxh 会议主题:为Beta阶段最早两日的开发制定目标 一.进度情况 组员 负责 两日内完成的任务 接下来两日预计完成的任务 hcc 前端 ...

  10. BUAA-OO-UML

    BUAA-OO-UML 作业架构设计分析 第一次作业 类图如下: 这个架构十分简明,就是在底层数据和调用者之间建立起一层隔离层.但其实可以将转换过程延迟到调用阶段. 第二次作业 类图如下: 架构基本同 ...