一、导数定义

当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)df(x0)/dx

二、微分定义

设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A×Δx+ο(Δx),其中A为不依赖Δx的常数,ο(Δx)是Δx的高阶无穷小。则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分线性部分),记作dy,即dy=A×Δx,当x= x0时,则记作 \(dy∣x=x_0\) 。

三、dy和Δy比较大小

1、题目由来

以后记住了但凡遇见f(a)-f(b)就往拉格朗日中值定理靠

2、表示含义

Δy是一个区间Δx上的y的差值;

dy表示的是区间上Δx切线的差值

3、几何表示

4、凹凸函数比较大小

(1)判别凹凸函数

(2)比较

比较dy与Δy的大小就是要看高阶无穷小o(dx)的符号。对于一般的函数f(x),o(dx)的符号不一定,无法比较。凹函数Δy>dy凸函数Δy<dy。 (这里的大小包含正负,指的是单纯的数值大小,而不是长度 ,比如Δy=-5,dy=-6,虽然长度上5<6,但因为需要包括正负号,所以Δy>dy)

(3)案例:

四、一道定义题目

五、可导可微充分必要证明

(1)可导推可微

(2)可微推可导

对dy和Δy的浅薄理解的更多相关文章

  1. 对JDK、JRE和JVM的一些浅薄理解

    JDK:JDK(Java Development Kit),顾名思义是java程序的开发包,任何java程序想要运行都需要相应版本的JDK,可以到oracle下载(下载之后自带JRE和编译工具等,无需 ...

  2. MySQL 执行计划中Extra的浅薄理解

    1.using where: Extra中出现“Using where”,通常来说,意味着全表扫描或者在查找使用索引的情况下,但是还有查询条件不在索引字段当中. 如果需要回表也是用这个. 2.usin ...

  3. js构造函数的浅薄理解

    任何函数,只要通过 new 操作符来调用,那它就可以作为构造函数 如:任何函数,只要通过 new 操作符来调用,那它就可以作为构造函数 : fuction Preson(){...} var pres ...

  4. PHP垃圾回收机制的一些浅薄理解

    相信只要入门学习过一点开发的同学都知道,不管任何编程语言,一个变量都会保存在内存中.其实,我们这些开发者就是在来回不停地操纵内存,相应地,我们如果一直增加新的变量,内存就会一直增加,如果没有一个好的机 ...

  5. 【pytorch】pytorch-backward()的理解

    pytorch-backword函数的理解 函数:\(tensor.backward(params)\) 这个params的维度一定要和tensor的一致,因为tensor如果是一个向量y = [y1 ...

  6. 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...

  7. happens-before通俗理解

    原文地址:http://ifeve.com/easy-happens-before/ 学习Java并发,到后面总会接触到happens-before偏序关系.初接触玩意儿简直就是不知所云,下面是经过一 ...

  8. 对于BFS的理解和部分例题(

    (图文无关    雾 搜索是一个NOIP当中经常出现的考点,其实搜索换个方式来想也无非就是让电脑来帮你试,最后得到一个结果,当然这么口胡谁都会,那么我们就来看看搜索当中的一个大部分: BFS(广度优先 ...

  9. i++ 和++i 的理解 以防面试

    根本原理: //模拟 a++ function afterAdd(){ var temp = a; a = a+1; return temp; } //模拟++a; function beforeAd ...

随机推荐

  1. Linux目录同步到阿里云OSS工具ossutil

    Linux目录同步到阿里云OSS工具ossutil 背景 ​ 最近公司服务用户激增,常规文件服务器不能满足需求,严重影响性能,决定将静态文件迁移到阿里云OSS,用来解决性能问题,提高用户体验.毕竟之前 ...

  2. composer 忽略版本检测

    今天安装插件的时候,直接不能安装,提示其他插件版本要求 tip:心细的朋友可能发现黄色部分提示了,提示我们升级composer,现在composer2.0已经发布了,赶快升级吧传送门 https:// ...

  3. 【tp3.2】根据不同域名来加载不同的配置文件

    遇到问题: 最近遇到一个需求,需要多个公众号使用同一个项目,这就导致了不同公众号访问的数据库和公众号配置不同. 解决思路: 查看文档:http://document.thinkphp.cn/manua ...

  4. SpringBoot 整合 Elastic Stack 最新版本(7.14.1)分布式日志解决方案,开源微服务全栈项目【有来商城】的日志落地实践

    一. 前言 日志对于一个程序的重要程度不用过多的言语修饰,本篇将以实战的方式讲述开源微服务全栈项目 有来商城 是如何整合当下主流日志解决方案 ELK +Filebeat . 话不多说,先看实现的效果图 ...

  5. Appium Capability使用进阶

  6. Spring Cloud Gateway 没有链路信息,我 TM 人傻了(下)

    本系列是 我TM人傻了 系列第五期[捂脸],往期精彩回顾: 升级到Spring 5.3.x之后,GC次数急剧增加,我TM人傻了 这个大表走索引字段查询的 SQL 怎么就成全扫描了,我TM人傻了 获取异 ...

  7. 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 百篇博客分析OpenHarmony源码 | v69.01

    百篇博客系列篇.本篇为: v69.xx 鸿蒙内核源码分析(文件句柄篇) | 深挖应用操作文件的细节 | 51.c.h.o 文件系统相关篇为: v62.xx 鸿蒙内核源码分析(文件概念篇) | 为什么说 ...

  8. CF666E-Forensic Examination【广义SAM,线段树合并】

    正题 题目链接:https://www.luogu.com.cn/problem/CF666E 解题思路 给出一个串\(S\)和\(n\)个串\(T_i\).\(m\)次询问\(S_{a\sim b} ...

  9. P3306-[SDOI2013]随机数生成器【BSGS】

    正题 题目链接:https://www.luogu.com.cn/problem/P3306 题目大意 给出一个\(p,a,b,x_1,t\),有\(x_i=ax_{i-1}+b\) 求一个最小的\( ...

  10. CF1370F2-The Hidden Pair(Hard Version)【交互题,二分】

    正题 题目链接:https://www.luogu.com.cn/problem/CF1370F2 题目大意 \(T\)组数据,给出\(n\)个点的一棵树,有两个隐藏的关键点.你每次可以询问一个点集, ...