MindInsight训练可视整体设计介绍
MindInsight训练可视整体设计介绍
MindInsight是MindSpore的可视化调试调优组件。通过MindInsight可以完成训练可视、性能调优、精度调优等任务。
训练可视功能主要包括训练看板、模型溯源、数据溯源等功能,训练看板中又包括标量、参数分布图、计算图、数据图、数据抽样、张量等子功能。
本文主要介绍MindInsight训练可视功能的逻辑架构、代码组织和数据模型。
训练可视逻辑架构
在架构上,训练可视功能的逻辑架构分为两部分:训练信息收集架构,训练信息分析及展示架构。
图1 MindInsight训练可视逻辑架构
训练信息收集架构
训练信息收集功能在MindSpore中,包括训练信息收集API模块和训练信息持久化模块。
训练信息收集API包括:
- 基于summary算子的训练信息收集API。这部分API主要包括4个summary算子,即用于记录标量数据的ScalarSummary算子,用于记录图片数据的ImageSummary算子,用于记录参数分布图(直方图)数据的HistogramSummary算子和用于记录张量数据的TensorSummary算子。请访问算子支持列表以获取关于这些算子的信息。
- 基于Python API的训练信息收集API。通过SummaryRecord.add_value方法,可以在Python代码中完成训练信息的收集。
- 易用的训练信息收集callback。通过SummaryCollector这一callback可以方便地收集常用训练信息到训练日志中。
训练信息持久化模块主要包括用于管理缓存的summary_record模块和用于并行处理数据、写入文件的write_pool模块。训练信息持久化后,存储在训练日志文件(summary文件中)。
训练信息分析及展示架构
训练信息分析及展示架构在MindInsight中,包括Web UI和后端两大部分。后端从下到上可以分为数据加载及缓存层、业务逻辑层、API 层。数据加载及缓存层主要由训练日志文件发现模块、训练日志文件解析模块及缓存管理模块组成。业务逻辑层主要由训练看板业务模块和溯源业务模块组成。API层主要由RESTful API模块组成。各模块的主要功能如下:
- 训练日志文件发现模块:用于在给定的训练日志根目录(summary-base-dir)中扫描并发现含有训练日志文件的训练日志目录。只有含有训练日志文件的目录会被识别为训练日志目录。
- 训练日志文件解析模块:用于解析训练日志文件。
- 缓存管理模块:用于管理训练日志解析任务,缓存训练日志解析结果。其会定期调用训练日志发现模块,扫描最新的训练日志目录列表;然后调用解析模块解析文件内容,将解析结果存储在缓存中以供UI查询。
- 训练看板模块:用于提供训练看板功能的业务逻辑,支撑UI查询训练看板数据。
- 溯源模块:用于提供模型溯源和数据溯源的业务逻辑,支撑UI查询溯源数据。
- RESTful API模块:用于将业务模块提供的接口包装为RESTful API。
代码组织
以下是MindInsight代码仓库中的部分重要目录及说明。
训练可视数据模型
训练信息数据流
训练信息产生于用户训练的过程中。用户可以通过训练信息收集API将这些训练信息收集起来,并通过训练信息持久化模块将这些训练信息保存到磁盘上,产生训练日志文件(summary文件)。训练日志文件生成后,便可以使用MindInsight对其中的信息进行可视化。
图2 训练信息数据流
数据模型
MindInsight的简要数据模型如图3所示。一个训练日志目录会被MindInsight识别为一个训练作业。训练作业是MindInsight的最小管理单元。一个训练作业可以关联0-1个溯源数据,关联0-1个训练过程数据。训练过程数据内部有着丰富的结构,每一个具体的数据,可以通过给定的插件名称、标签和迭代唯一确定。下面将分别介绍这些概念。
图3 以UML类图表示的数据模型
训练作业
MindInsight通过目录来区分不同的训练作业。为了方便用户区分不同训练作业的训练日志文件,SummaryCollector、SummaryRecord都要求用户指定存放训练日志文件的目录。相同目录中的训练日志文件,被认为是同一次训练作业中产生的训练数据,不同目录中的训练日志文件,被认为是不同训练作业中产生的文件。
在MindInsight的代码中,一次训练一般被称为一个TrainJob。TrainJob的id即该次训练的日志所在目录的目录名(例如 ./train_my_lenet_1)。
一次训练的过程中,一般会产生该次训练的溯源数据文件(文件名以_lineage结尾)和训练过程数据文件(文件名一般以_MS结尾)。其中溯源数据主要从全局出发,描述该次训练的不变性质,例如训练所用的数据集路径、训练所用的优化器、以及用户自定义的溯源信息。这些信息最突出的特点是不会在训练过程中变化。而训练过程数据主要描述该次训练的变化情况,例如loss值、参数分布、一个迭代中送入模型的图片数据等。这些信息最突出的特点是每个迭代都会发生变化。
需要注意的是,关于训练信息是否发生变化的分类,并不是绝对的。比如训练过程数据文件中会含有计算图数据,其一般在训练开始的时候就确定了。
溯源数据
溯源数据主要从全局出发,描述某次训练的不变性质。当MindInsight识别到多个训练日志目录时,这若干次训练的溯源数据,被组织成表格的形式展示,以方便对比和分析。
训练过程数据
- 插件名称(plugin_name)
对于训练过程数据,首先将这些训练数据按类型分为标量数据(scalar)、直方图数据(histogram)、图片数据(image)、张量数据(tensor)等类型,这些类型在MindInsight的中被称为插件名称(plugin_name),当前mindinsight支持的插件名称定义在mindinsight.datavisual.common.enums.PluginNameEnum中。
- 标签(tag)
无论数据属于何种类型,其都会依照tag进一步被分为不同的序列。tag一般由用户命名,用于对数据进行区分。比如记录loss值的标量数据,其tag名可以为loss。需要说明的是,MindInsight在对数据进行处理时,会根据插件名称自动为tag附加后缀。例如tag为loss的数据为标量数据,则该tag会被自动重命名为loss/scalar。
- 迭代数(step)
训练过程数据是在训练的每个迭代中产生的,为了区分这些数据,数据会被标记上该数据所对应的迭代数。
- 数据的查询和展示
在展示数据时,用户常常希望看到某个标签下的数据,随着训练过程的变化情况。因此,查询数据时,一般不会指定迭代数,而是直接指定训练作业、插件名称和标签,查询该标签下所有迭代的数据。
MindInsight训练可视整体设计介绍的更多相关文章
- MindInsight张量可视设计介绍
MindInsight张量可视设计介绍 特性背景 张量可视,能够帮助用户直观查看训练过程中的Tensor值,既支持以直方图的形式呈现Tensor的变化趋势,也支持查看某次step的具体Tensor值. ...
- MindInsight计算图可视设计
MindInsight计算图可视设计 特性背景 计算图可视的功能,主要协助开发者在下面这些场景中使用. 开发者在编写深度学习神经网络的代码时,可以使用计算图的功能查看神经网络中算子的数据流走向,以及模 ...
- Alink漫谈(十二) :在线学习算法FTRL 之 整体设计
Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 目录 Alink漫谈(十二) :在线学习算法FTRL 之 整体设计 0x00 摘要 0x01概念 1.1 逻辑回归 1.1.1 推导过程 ...
- [转]Libev源码分析 -- 整体设计
Libev源码分析 -- 整体设计 libev是Marc Lehmann用C写的高性能事件循环库.通过libev,可以灵活地把各种事件组织管理起来,如:时钟.io.信号等.libev在业界内也是广受好 ...
- RecyclerView源码分析(一)--整体设计
RecyclerView这个控件出来已经有一段时间了,如果看这篇文章的你,还没有使用过这个控件.那请先去学习怎样使用.不然看也白看.这里奉上一些关于介绍RecyclerView使用方法的优秀博客: 鸿 ...
- ibatis源码学习1_整体设计和核心流程
背景介绍ibatis实现之前,先来看一段jdbc代码: Class.forName("com.mysql.jdbc.Driver"); String url = "jdb ...
- MindSpore Lite整体架构介绍
MindSpore Lite整体架构介绍 MindSpore Lite框架的总体架构如下所示: 前端(Frontend): 负责模型生成,用户可以通过模型构建接口构建模型,将第三方模型和MindSpo ...
- MindSpore整体架构介绍
MindSpore整体架构介绍 MindSpore框架架构总体分为MindSpore前端表示层.MindSpore计算图引擎和MindSpore后端运行时三层. MindSpore前端表示层(Mind ...
- Mybatis原理分析之二:框架整体设计
1.引言 本文主要讲解Mybatis的整体程序设计,理清楚框架的主要脉络.后面文章我们再详细讲解各个组件. 2.整体设计 2.1 总体流程 (1)加载配置并初始化 触发条件:加载配置文件 ...
随机推荐
- 【责任链模式】责任链模式结合Spring实战Demo
备注: 责任链与策略模式有很多相似之处,如都是行为型设计模式,都能够处理代码中的if-else逻辑 主要区别在于: 策略模式 封装了算法,通过上下文对象去接受客户端的数据,根据数据类型执行不同的算法 ...
- hdu4496并查集的删边操作
题意: 给你一个图,问你删除一些边后还有几个连通快.. 思路: 典型的并查集删边操作,并查集的删边就是先把不删除的边并查集一边(本题没有不删除的边),然后逆序吧所有要删除的边以 ...
- Windows Server系统加固
目录 账户管理.认证授权 管理账户 管理口令 授权 审核策略 IP协议安全配置 设备其他配置操作 账户管理.认证授权 管理账户 说明: 对于管理员账号,要求更改缺省账户名称,并且禁用 guest (来 ...
- Windows核心编程 第十二章 纤程
第1 2章 纤 程 M i c r o s o f t公司给Wi n d o w s添加了一种纤程,以便能够非常容易地将现有的 U N I X服务器应用程序移植到Wi n d o w s中.U N I ...
- 【JavaScript】Leetcode每日一题-青蛙过河
[JavaScript]Leetcode每日一题-青蛙过河 [题目描述] 一只青蛙想要过河. 假定河流被等分为若干个单元格,并且在每一个单元格内都有可能放有一块石子(也有可能没有). 青蛙可以跳上石子 ...
- Day007 递归
递归 定义 A方法调A方法!就是自己调自己 作用 利用递归可以用简单的程序来解决一些复杂的问题.它通常把一个大型复杂的问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的程 ...
- spring.framework 版本从4.1.6.RELEASE升到5.0.20.RELEASE
将org.springframework 使用到的jar 版本号改为5.0.20.RELEASE后运行会报错: Servlet.service() for servlet [springmvc] in ...
- 熟悉 Bash 快捷键来提高效率
Bash是GNU计划的一部分,是多数Linux发行版提供的默认Shell. Linux的精髓就在于命令行的高效,而学习命令行的第一步便是学习如何快速地输入命令. 其实包括Bash在内的多数Linux ...
- [bug] PyCharm远程Spark集群:Java gateway process exited before sending its port number
原因 无法连接到集群上的java 解决 方法一: 在右上角Edit Configurations中,添加一条环境变量JAVA_HOME,值为远程机器上的java安装路径 方法二: 直接在代码里写上JA ...
- Ubuntu 18.04 进入单用户模式修改密码
Ubuntu 18.04 使用单用户模式修改密码 操作步骤 启动Ubuntu 18.04 ,长按 Shift 键(有的可能按 Esc 键:绝大多数按 Shift 键)进入单用户视图,选中 Ubuntu ...