本文将从ArrayList类的存储结构、初始化、增删数据、扩容处理以及元素迭代等几个方面,分析该类常用方法的源码。

数据存储设计

该类用一个Object类型的数组存储容器的元素。对于容量为空的情况,提供了两个成员变量来表示。

// 用于存储容器元素的数组,数组长度不小于容器内元素个数
transient Object[] elementData; // 容器的大小,反映的是容器内实时元素个数,不超过数组长度
private int size; // 容器为空的实例
private static final Object[] EMPTY_ELEMENTDATA = {}; // 默认构造的实例,用于展示加入第一个元素后容器膨胀的过程
private static final Object[] DEFAULTCAPACITY_EMPTY_ELEMENTDATA = {};

初始化

该类提供了三个初始化方法,如下所示:

// 基本构造方法
public ArrayList() {
// 数组初始化为长度为0的空数组
this.elementData = DEFAULTCAPACITY_EMPTY_ELEMENTDATA;
} // 指定初始容量的构造方法
public ArrayList(int initialCapacity) {
if (initialCapacity > 0) {
this.elementData = new Object[initialCapacity];
} else if (initialCapacity == 0) {
this.elementData = EMPTY_ELEMENTDATA;
} else {
throw new IllegalArgumentException("Illegal Capacity: "+initialCapacity);
}
} // 通过已有集合进行实例化的构造方法
public ArrayList(Collection<? extends E> c) {
elementData = c.toArray();
if ((size = elementData.length) != 0) { // c.toArray might (incorrectly) not return Object[] (see 6260652)
// 如果集合转换得到的数组长度不为0且数组元素类型不为Object类型,则将其转换为Object类型的数组
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, size, Object[].class);
} else {
// replace with empty array.
this.elementData = EMPTY_ELEMENTDATA;
}
}

增删数据

单元素插入方法,这里没有对插入元素进行非null限制,说明ArrayList容器是可以插入null的。

/* 在已有元素末尾增加元素 */
public boolean add(E e) {
/* 确保数组的大小至少有size+1的长度,如果小于会对原数组进行扩容 */
ensureCapacityInternal(size + 1); // Increments modCount!! /* 在索引为size处添加元素e,同时size+1 */
elementData[size++] = e;
return true;
} /* 在数组索引为index处插入元素 */
public void add(int index, E element) {
/* 检查索引位置,index的范围为[0,size] */
rangeCheckForAdd(index); /* 确保数组的大小至少有size+1的长度,如果小于会对原数组进行扩容 */
ensureCapacityInternal(size + 1); // Increments modCount!! /* 将原来index处及之后的元素全部向后移一位 */
System.arraycopy(elementData, index, elementData, index + 1,size - index); /* 将元素element放入index处 */
elementData[index] = element; /* 容器内元素个数+1 */
size++;
}

集合插入方法

// 在已有元素末尾增加集合中所有元素
public boolean addAll(Collection<? extends E> c) {
// 将集合转化为Object数组
Object[] a = c.toArray();
int numNew = a.length;
// 确保数组的大小至少有size+numNew的长度,如果小于会对原数组进行扩容
ensureCapacityInternal(size + numNew); // Increments modCount
// 将数组a内元素拷贝到数组elementData末尾
System.arraycopy(a, 0, elementData, size, numNew);
// 数组大小增加numNew
size += numNew;
return numNew != 0;
} // 在索引index处插入集合中所有元素
public boolean addAll(int index, Collection<? extends E> c) {
// 检查索引位置,index的范围为[0,size]
rangeCheckForAdd(index); Object[] a = c.toArray();
int numNew = a.length; // 确保数组的大小至少有size+numNew的长度,如果小于会对原数组进行扩容
ensureCapacityInternal(size + numNew); // Increments modCount // 要移动的元素长度
int numMoved = size - index;
// 如果插入位置不在size处,则需要把原数组[index,size-1]范围内元素移动numMoved长度
if (numMoved > 0)
System.arraycopy(elementData, index, elementData, index + numNew,
numMoved); System.arraycopy(a, 0, elementData, index, numNew);
size += numNew;
return numNew != 0;
}

修改元素方法,只提供了修改指定索引下标元素的方法

/* 替换指定索引处元素 */
public E set(int index, E element) {
/* 检查索引位置,index的范围只能在[0,size-1]内 */
rangeCheck(index); /* 替换index处元素并返回原值 */
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}

单元素删除元素方法,提供了根据索引删除和查找对象进行删除的方法

// 删除指定索引处元素
public E remove(int index) {
// 检查索引范围,只能在[0,size-1]范围内
rangeCheck(index); modCount++;
// 取出index处待删除元素
E oldValue = elementData(index); // 要移动的元素长度
int numMoved = size - index - 1;
// 如果index≠size-1,将index后的元素全部往前移动一位
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
// size数量先减一
// 因为删除了一个元素,数组最后一个元素的引用置为null,让垃圾收集器去回收元素对象
elementData[--size] = null; // clear to let GC do its work // 返回删除的元素
return oldValue;
} // 查找对象并删除元素
public boolean remove(Object o) {
// 这里从下标0开始遍历数组,只删除遇到的第一个相同元素
if (o == null) {
for (int index = 0; index < size; index++)
if (elementData[index] == null) {
fastRemove(index);
return true;
}
} else {
for (int index = 0; index < size; index++)
// 因为数组元素可以为null,所以需要用o.equals()以防止NullPointException
if (o.equals(elementData[index])) {
fastRemove(index);
return true;
}
}
return false;
} // 跳过边界检查删除index索引处元素,确保index处于[0,size-1]范围内,并且不范围删除的元素
private void fastRemove(int index) {
modCount++;
int numMoved = size - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--size] = null; // clear to let GC do its work
}

批量删除方法

// 从本集合中删除与集合C的交集
public boolean removeAll(Collection<?> c) {
// 确保集合C非null,否则抛出NullPointException
Objects.requireNonNull(c);
return batchRemove(c, false);
} // complement为false表示批量删除与C的交集元素,complement为true表示只留下和C的交集元素,其它全部删除
// 以下说明均采用complement为false的情况,即删除交集元素
private boolean batchRemove(Collection<?> c, boolean complement) {
final Object[] elementData = this.elementData; // 这里采用了双指针的思想,r为当前遍历到的位置,w指向将要写入元素的位置
int r = 0, w = 0; // 是否有元素被删除,有则为true,无则为false
boolean modified = false;
try {
// 遍历elementDate数组,如果不在集合c中,则写入w处,并将w右移一位
for (; r < size; r++)
if (c.contains(elementData[r]) == complement)
elementData[w++] = elementData[r];
} finally {
// Preserve behavioral compatibility with AbstractCollection,
// even if c.contains() throws.
// 如果没有遍历完,即c.contains()抛出了异常或错误,需要将r处及其之后的元素复制到w之后
if (r != size) {
System.arraycopy(elementData, r,
elementData, w,
size - r);
// w向右移动
w += size - r;
}
// 如果w≠size,说明有交集元素被删除
if (w != size) {
// clear to let GC do its work
// 将w处及之后的引用置为null,让gc自己回收
for (int i = w; i < size; i++)
elementData[i] = null;
modCount += size - w;
size = w; // 有元素被删除,置为true
modified = true;
}
}
return modified;
}

扩容处理

每次在增加元素时,都需要确保数组的长度要大于容器内元素的个数。比如在add方法中。

public boolean add(E e) {
// 使用ensureCapacityInternal方法确保数组的大小不小于插入元素后的元素个数
ensureCapacityInternal(size + 1); // Increments modCount!!
elementData[size++] = e;
return true;
}

我们看一下该方法具体的实现,这里扩容时会判断元素组长度的1.5倍是否满足输入最小长度要求,满足的话会按1.5倍容量定义新数组并复制元素到新数组,不满足则按输入最小长度扩容。

// 确保数组长度不低于minCapacity
private void ensureCapacityInternal(int minCapacity) {
ensureExplicitCapacity(calculateCapacity(elementData, minCapacity));
} private static int calculateCapacity(Object[] elementData, int minCapacity) {
// 如果数组为空集,则取默认大小(10)和传入参数中较大的一个
// 也就是说最小容量为10
if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA) {
return Math.max(DEFAULT_CAPACITY, minCapacity);
}
return minCapacity;
} private void ensureExplicitCapacity(int minCapacity) {
modCount++; // overflow-conscious code
// 如果当前数组长度未达到输入大小,则进行扩容操作
if (minCapacity - elementData.length > 0)
grow(minCapacity);
} // 扩容操作
private void grow(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
// 原长度的1.5倍
int newCapacity = oldCapacity + (oldCapacity >> 1);
// 如果传入参数超过数组原长1.5倍,则设置新长度为传入参数,否则为原长1.5倍
if (newCapacity - minCapacity < 0)
newCapacity = minCapacity;
// 如果新长度超过设定最大长度(Integer.MAX_VALUE-8),则获取更大容量
if (newCapacity - MAX_ARRAY_SIZE > 0)
newCapacity = hugeCapacity(minCapacity);
// minCapacity is usually close to size, so this is a win:
elementData = Arrays.copyOf(elementData, newCapacity);
} // 获取大容量
private static int hugeCapacity(int minCapacity) {
// 如果传入参数超过int最大值,表示扩容后的数组长度溢出了,抛出OOM Error
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
// 如果新长度超过设定最大长度(Integer.MAX_VALUE-8)且不超过Integer.MAX_VALUE,则设置为Integer.MAX_VALUE
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}

元素迭代

迭代的使用和其它容器类似,通过iterator()方法返回一个Iterator实例,通过调用该实例的hashNext()方法和next()方法进行迭代。

ArrayList类内部也定义了实现了Iterator接口的内部类,iterator()方法正是返回了该类的实例。实际上该类内部定义了多个Iterator的实现类,用以不同的迭代场景,如下所示:

/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator<E>{
...
} /**
* An optimized version of AbstractList.ListItr
*/
private class ListItr extends Itr implements ListIterator<E> {
...
}

这里以Itr类为例分析hashNext()方法和next()方法具体实现

private class Itr implements Iterator<E> {
// 下一个元素的索引,默认值为0
int cursor; // index of next element to return
// 上一个元素的索引
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount; Itr() {} // 是否有下一个元素
public boolean hasNext() {
// 索引未到达size处则为true
return cursor != size;
} // 返回下一个元素(索引从-1开始)
@SuppressWarnings("unchecked")
public E next() {
// 检查是否有修改(增加或删除元素),修改了的话会抛出ConcurrentModificationException
// 这里也说明ArrayList类是不支持并发操作的
checkForComodification(); // 如果当前索引>=size,说明越界了,抛出异常
int i = cursor;
if (i >= size)
throw new NoSuchElementException(); // 如果当前索引超过数组长度,说明有其他线程增加元素对数组进行了扩容操作
// 抛出并发修改异常
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException(); // 如果一切正常,索引+1并返回索引位置元素
cursor = i + 1;
return (E) elementData[lastRet = i];
} // 删除当前遍历到的元素,(至少要调用一次next()方法)
public void remove() {
// 如果lastRet值<0,说明索引还在-1,一次next()方法都没调用,抛出异常
if (lastRet < 0)
throw new IllegalStateException(); // 检查是否有并发修改,有修改抛出异常
checkForComodification(); // 从list中删除下标为lastRet的元素,并更新下标索引的值
try {
ArrayList.this.remove(lastRet);
cursor = lastRet;
lastRet = -1;
expectedModCount = modCount;
} catch (IndexOutOfBoundsException ex) {
throw new ConcurrentModificationException();
}
}
...
}

ArrayList方法源码分析的更多相关文章

  1. Java split方法源码分析

    Java split方法源码分析 public String[] split(CharSequence input [, int limit]) { int index = 0; // 指针 bool ...

  2. ArrayList迭代器源码分析

    集合的遍历 Java集合框架中容器有很多种类,如下图中: 对于有索引的List集合可以通过for循环遍历集合: List<String> list = new ArrayList<& ...

  3. ArrayList的源码分析

    在项目中经常会用到list集合来存储数据,而其中ArrayList是用的最多的的一个集合,这篇博文主要简单介绍ArrayList的源码分析,基于JDK1.7: 这里主要介绍 集合 的属性,构造器,和方 ...

  4. invalidate和requestLayout方法源码分析

    invalidate方法源码分析 在之前分析View的绘制流程中,最后都有调用一个叫invalidate的方法,这个方法是啥玩意?我们来看一下View类中invalidate系列方法的源码(ViewG ...

  5. Linq分组操作之GroupBy,GroupJoin扩展方法源码分析

    Linq分组操作之GroupBy,GroupJoin扩展方法源码分析 一. GroupBy 解释: 根据指定的键选择器函数对序列中的元素进行分组,并且从每个组及其键中创建结果值. 查询表达式: var ...

  6. 【Java】NIO中Selector的select方法源码分析

    该篇博客的有些内容和在之前介绍过了,在这里再次涉及到的就不详细说了,如果有不理解请看[Java]NIO中Channel的注册源码分析, [Java]NIO中Selector的创建源码分析 Select ...

  7. jQuery实现DOM加载方法源码分析

    传统的判断dom加载的方法 使用 dom0级 onload事件来进行触发所有浏览器都支持在最初是很流行的写法 我们都熟悉这种写法: window.onload=function(){ ... }  但 ...

  8. jQuery.extend()方法和jQuery.fn.extend()方法源码分析

    这两个方法用的是相同的代码,一个用于给jQuery对象或者普通对象合并属性和方法一个是针对jQuery对象的实例,对于基本用法举几个例子: html代码如下: <!doctype html> ...

  9. jQuery.clean()方法源码分析(一)

    在jQuery 1.7.1中调用jQuery.clean()方法的地方有三处,第一次就是在我之前的随笔分析jQuery.buildFramgment()方法里面的,其实还是构造函数的一部分,在处理诸如 ...

随机推荐

  1. Python数据分析入门(一):搭建环境

    Python版本: 本课程用到的Python版本都是3.x.要有一定的Python基础,知道列表.字符串.函数等的用法. Anaconda: Anaconda(水蟒)是一个捆绑了Python.cond ...

  2. 学会使用 Mysql show processlist 排查问题

    mysql show full processlist 查看当前线程处理情况 事发现场 每次执行看到的结果应该都有变化,因为是实时的,所以我定义为:"事发现场",每次执行就相当于现 ...

  3. 扩展中国剩余定理(EXCRT)学习笔记

    扩展中国剩余定理(EXCRT)学习笔记 用途 求解同余方程组 \(\begin{cases}x\equiv c_{1}\left( mod\ m_{1}\right) \\ x\equiv c_{2} ...

  4. Java代码格式化规范实践总结

    目标说明 统一良好的代码格式规范可以有效提升开发团队之间的「协作效率」,如果不同的开发团队或者开发人员采用不同的代码格式规范,那么每次Format代码都会导致大量的变化,在Code Review及Me ...

  5. 消息中间件-ActiveMQ高可用集群和持久化机制

    1.修改active.mq的xml文件 2.延时.调度消息 package com.study.mq.b1_message; import org.apache.activemq.ActiveMQCo ...

  6. Leedcode算法专题训练(字符串)

    4. 两个字符串包含的字符是否完全相同 242. Valid Anagram (Easy) Leetcode / 力扣 可以用 HashMap 来映射字符与出现次数,然后比较两个字符串出现的字符数量是 ...

  7. Java执行groovy脚本的两种方式

    记录Java执行groovy脚本的两种方式,简单粗暴: 一种是通过脚本引擎ScriptEngine提供的eval(String)方法执行脚本内容:一种是执行groovy脚本: 二者都通过Invocab ...

  8. Pytest系列(30)- 使用 pytest-xdist 分布式插件,如何保证 scope=session 的 fixture 在多进程运行情况下仍然能只运行一次

    如果你还想从头学起Pytest,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1690628.html 背景 使用 pytest-xdis ...

  9. 【并发编程】Java中的锁有哪些?

    0.死锁 两个或者两个以上的线程在执行过程中,由于竞争资源或者由于彼此通信而造成的一种阻塞现象,若无外力作用,他们都将无法让程序进行下去: 死锁条件: 不可剥夺条件: T1持有的资源无法被T2剥夺 请 ...

  10. Android进程的so注入--Poison(稳定注入版)

    本文博客地址:http://blog.csdn.net/qq1084283172/article/details/53869796 Android进程的so注入已经是老技术了,网上能用的Android ...