A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2021)

基数估计及联合分布相关信息

在自回归模型中加入query信息训练的challenge

现有的自回归模型无法实现从query中学习,这是因为在做反向传播时,梯度无法流经采样的一些离散随机变量(在本文中代表进行范围查询时渐进采样出的一系列点),因此采样过程是不可微的。本文介绍了使用gumbel-softmax方法对采样的点进行重参数化,使之可微的方法。

Gumbel-Softmax Trick

  • gumbel-softmax是一种重参数化技巧,假设我们知道数据表中某一个属性列的概率分布P,范围查询需要我们在目标范围按照该概率分布采样出一些点{x...},利用这些采样点对范围选择度进行估计。但是这样采样出来的点有一个问题:x只是按照某种概率分布P直接选择出来的值,并没有一个明确定义公式,这就导致了x虽然与概率P存在某种关联,但是并没有办法对其进行求导,也就不能利用反向传播调整概率分布。
  • 既然问题的原因是没有一个明确的公式,那么我们构造出一个公式,使之得到的结果就是这些采样不就可以解决不可微的问题了吗?我们想要构造的就是下式,即gumbel-max技巧:
\[f(x)=\left\{ \begin{aligned} 1,i=argmax(log(p_j)+g_j) \\0,otherwisee \end{aligned} \right.
\]

其中\(g_i=-log(-log(u_i)),u_i\sim Uniform(0,1)\).被称为Gumbel噪声,这个噪声的作用是使得每次公式产生的结果都不一致因为如果每次都一致就不叫采样了。根据该式我们最终会得到一个one-hot向量,用该向量与待采样的值域空间相乘即可得到采样点。我们注意到上式存在argmax操作,该操作也是不可微的,此时我们用softmax操作代替argmax即可解决问题,而最终方案被称为gumbel-softmax技巧。

损失函数

  • data-driven 使用交叉熵损失函数
  • query-driven使用q-error 损失函数*
  • 本文通过一个超参数将两者相结合如下图:

workflow

A Unified Deep Model of Learning from both Data and Queries for Cardinality Estimation 论文解读(SIGMOD 2021)的更多相关文章

  1. Fauce:Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation 论文解读(VLDB 2021)

    Fauce:Fast and Accurate Deep Ensembles with Uncertainty for Cardinality Estimation 论文解读(VLDB 2021) 本 ...

  2. Deep Upsupervised Cardinality Estimation 解读(2019 VLDB)

    Deep Upsupervised Cardinality Estimation 本篇博客是对Deep Upsupervised Cardinality Estimation的解读,原文连接为:htt ...

  3. 论文解读(GraphDA)《Data Augmentation for Deep Graph Learning: A Survey》

    论文信息 论文标题:Data Augmentation for Deep Graph Learning: A Survey论文作者:Kaize Ding, Zhe Xu, Hanghang Tong, ...

  4. Unified shader model

    https://en.wikipedia.org/wiki/Unified_shader_model In the field of 3D computer graphics, the Unified ...

  5. Deep High-Resolution Representation Learning for Human Pose Estimation

    Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...

  6. 论文笔记:(NIPS2017)PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space

    目录 一. 存在的问题 1.提取局部特征的能力 2.点云密度不均问题 二.解决方案 1.改进特征提取方法: (1)采样层(sampling) (2)分组层(grouping) (3)特征提取层(fea ...

  7. 论文解读(SUBLIME)《Towards Unsupervised Deep Graph Structure Learning》

    论文信息 论文标题:Towards Unsupervised Deep Graph Structure Learning论文作者:Yixin Liu, Yu Zheng, Daokun Zhang, ...

  8. 论文解读(DCN)《Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering》

    论文信息 论文标题:Towards K-means-friendly Spaces: Simultaneous Deep Learning and Clustering论文作者:Bo Yang, Xi ...

  9. 论文解读(IDEC)《Improved Deep Embedded Clustering with Local Structure Preservation》

    Paper Information Title:<Improved Deep Embedded Clustering with Local Structure Preservation>A ...

随机推荐

  1. Go语言切片一网打尽,别和Java语法傻傻分不清楚

    前言 我总想着搞清楚,什么样的技术文章才算是好的文章呢?因为写一篇今后自己还愿意阅读的文章并不容易,暂时只能以此为目标努力. 最近开始用Go刷一些题,遇到了一些切片相关的细节问题,这里做一些总结.切片 ...

  2. django之django-debug-toolbar调试工具配置与使用

    外部链接:https://blog.csdn.net/weixin_39198406/article/details/78821677 django-debug-toolbar的作用:进行性能调优,与 ...

  3. Bootstrap 弹出表单

  4. C字符串倒置-中部对称

    问题如图 Code #include<stdio.h> #include<string.h> #define MAX_LENGTH 10//最大字符串长度 void inver ...

  5. 在Android中用纯Java代码布局

    感谢大佬:https://www.jianshu.com/p/7aedea560f16 在Android中用纯Java代码布局 本文的完成了参考了一篇国外的教程,在此表示感谢. Android中的界面 ...

  6. Mac版play框架配置

    打开终端 输入 cd  - 再输入  touch .bash_profile 然后打开 open .bash_profile .bash_profile就是mac的配置文件  export PATH= ...

  7. Eclipse项目上的红叉解决方案

    Eclipse项目上存在红叉,但是又不影响运行,同时展开项目未指明任何内容出错,可以按如下步骤进行处理: 0.查看Problems视图,定位错误,发现处理之: 1.检查Build Path中的各个依赖 ...

  8. LVS+Keepalived 高可用群集部署

    LVS+Keepalived 高可用群集部署 1.LVS+Keepalived 高可用群集概述 2.LVS+Keepalived高可用群集部署 1.LVS+Keepalived 高可用群集概述: LV ...

  9. 通过loganalyzer展示数据库中的日志

    一.安装mysql # yum -y install mariadb-server # systemctl enable --now mariadb && systemctl stat ...

  10. 3.6 万颗星!开源 Web 服务器后起之秀,自带免费 HTTPS 开箱即用

    众所周知,Web 服务器是 Web 开发中不可或缺的基础服务,在开发中经常会用到.耳熟能详的开源 Web 服务器有久负盛名的 Apache.性能强劲的 Nginx.而我们今天要介绍的开源项目是采用 G ...