hdu3507 斜率优化学习笔记(斜率优化+dp)
QWQ菜的真实。
首先来看这个题。
很显然能得到一个朴素的\(dp\)柿子
\]
但是因为\(n\le 500000\),所以\(n^2\)一定是过不了的。
考虑应该怎么优化。
考虑什么时候存在一个\(j>k且j比k更优秀\)
\]
我们进行化简
\]
由于权值都是正数,所以\(s[j]-s[k]>0\)
我们设\(f[x]=sum[x]^2+dp[x]\)
则上述柿子等于$$2\times s[i]>\frac{f[j]-f[k]}{s[j]-s[k]}$$
观察到右边这个柿子是一个斜率的形式。
我们可以直接用单调队列维护一个下凸壳。
对于每次插入一个点,运用叉积进行\(check\),保证斜率是单调不降的。
int chacheng(Point x,Point y)
{
return x.x*y.y-y.x*x.y;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=(k.x-i.x);
x.y=(k.y-i.y);
y.x=(k.x-j.x);
y.y=(k.y-j.y);
if (chacheng(x,y)<=0) return true;
return false;
// if ((double)(k.y-j.y)/(double)(k.x-j.x)<(double)(j.y-i.y)/(double)(j.x-i.x)) return true;
//return false;
}
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
删除的话,只需要通过上面那个柿子,若存在\(q[head+1]比q[head]\)优秀,就弹出队首元素
void pop(int lim)
{
while (tail>=head+1 && (q[head+1].y-q[head].y)<=lim*(q[head+1].x-q[head].x)) head++;
}
剩下的就是\(dp\)部分
qwq因为一些奇奇怪怪的问题\(WA\)了一上午
xtbl
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e6+1e2;
struct Point{
int x,y;
};
Point q[maxn];
int dp[maxn];
int sum[maxn];
int val[maxn];
int n,m;
int head=1,tail=0;
int chacheng(Point x,Point y)
{
return x.x*y.y-y.x*x.y;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=(k.x-i.x);
x.y=(k.y-i.y);
y.x=(k.x-j.x);
y.y=(k.y-j.y);
if (chacheng(x,y)<=0) return true;
return false;
// if ((double)(k.y-j.y)/(double)(k.x-j.x)<(double)(j.y-i.y)/(double)(j.x-i.x)) return true;
//return false;
}
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while (tail>=head+1 && (q[head+1].y-q[head].y)<=lim*(q[head+1].x-q[head].x)) head++;
}
signed main()
{
while (scanf("%lld%lld",&n,&m)!=EOF)
{
memset(q,0,sizeof(q));
memset(dp,0,sizeof(dp));
memset(sum,0,sizeof(sum));
head=1,tail=0;
//n=read();m=read();
for (int i=1;i<=n;i++) val[i]=read();
for (int i=1;i<=n;i++) sum[i]=sum[i-1]+val[i];
dp[0]=0;
push((Point){0,0});
for (int i=1;i<=n;i++)
{
pop(2ll*sum[i]);
dp[i]=q[head].y-q[head].x*q[head].x+m+(sum[i]-q[head].x)*(sum[i]-q[head].x);
push((Point){sum[i],dp[i]+sum[i]*sum[i]});
//cout<<i<<" "<<dp[i]<<" "<<q[head].x<<" "<<q[head].y<<" "<<head<<" "<<tail<<endl;
}
cout<<dp[n]<<"\n";
}
return 0;
}
hdu3507 斜率优化学习笔记(斜率优化+dp)的更多相关文章
- 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)
深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...
- 学习笔记·斜率优化 [HNOI2008]玩具装箱
\(qwq\)今天\(rqy\)给窝萌这些蒟蒻讲了斜率优化--大概是他掉打窝萌掉打累了吧顺便偷了\(rqy\)讲课用的图 \(Step \ \ 1\) 一点小转化 事实上斜率优化是专门用来处理这样一类 ...
- KVM性能优化学习笔记
本学习笔记系列都是采用CentOS6.x操作系统,KVM虚拟机的管理也是采用virsh方式,网上的很多的文章都基于ubuntu高版本内核下,KVM的一些新的特性支持更好,本文只是记录了CentOS6. ...
- 深挖计算机基础:Linux性能优化学习笔记
参考极客时间专栏<Linux性能优化实战>学习笔记 一.CPU性能:13讲 Linux性能优化实战学习笔记:第二讲 Linux性能优化实战学习笔记:第三讲 Linux性能优化实战学习笔记: ...
- Pandas 性能优化 学习笔记
摘要 本文介绍了使用 Pandas 进行数据挖掘时常用的加速技巧. 实验环境 import numpy as np import pandas as pd print(np.__version__) ...
- HIVE优化学习笔记
概述 之前写过关于hive的已经有两篇随笔了,但是作者依然还是一枚小白,现在把那些杂七杂八的总结一下,供以后查阅和总结.今天的文章介绍一下hive的优化.hive是好多公司都在使用的东西,也有好多大公 ...
- 《Java程序性能优化》学习笔记 设计优化
豆瓣读书:http://book.douban.com/subject/19969386/ 第一章 Java性能调优概述 1.性能的参考指标 执行时间: CPU时间: 内存分配: 磁盘吞吐量: 网络吞 ...
- mysql 学习笔记5-- 数据库优化
ext4:(rw,noatime,nodiratime,nobarrier,data=ordered)xfs: (rw,noatime,nodiratim,nobarrier,logbufs=8,lo ...
- DP斜率优化学习笔记
斜率优化 首先,可以进行斜率优化的DP方程式一般式为$dp[i]=\max_{j=1}^{i-1}/\min_{j=1}^{i-1}\{a(i)*x(j)+b(i)*y(j)\}$ 其中$a(j)$和 ...
随机推荐
- Servlet学习笔记(四)之请求转发与重定向(RequestDispatcher与sendRedirect)
ServletContext可以实现请求转发(ServletContext请求转发相关内容见之前博客:http://blog.csdn.net/megustas_jjc/article/details ...
- GitHub+JSDelivr+PicGo+Typora免费白嫖高速稳定图床
0. 初衷1. 创建 GitHub 仓库2. 使用 jsDelivr 进行 CDN 加速3. 使用PicGo上传图片4. Typora 配置 PicGo 上传 0. 初衷 平时写文章,经常需要插入图片 ...
- JVM(一)类加载器与类加载过程
JVM是面试必面的一个知识点,也是高级程序员必备的一个技能.以下是JVM整体核心内容,包括类加载系统,运行时数据区内部结构,执行引擎,本地方法接口. 首先来学习类的加载器,虚拟机把描述类的数据从Cla ...
- MyBatis学习总结(五)——关联表查询的实现
一.一对一关联 1.1.提出需求 根据班级id查询班级信息(带老师的信息) 1.2.创建表和数据 创建一张教师表和班级表,这里我们假设一个老师只负责教一个班,那么老师和班级之间的关系就是一种一对一的关 ...
- SQL语句之高级使用
1.select top select top 用于规定要返回的数据的数目 注意:并非所有的数据库系统都支持 SELECT TOP 语句. MySQL 支持 LIMIT 语句来选取指定的条数数据, ...
- Selenium系列(十九) - Web UI 自动化基础实战(6)
如果你还想从头学起Selenium,可以看看这个系列的文章哦! https://www.cnblogs.com/poloyy/category/1680176.html 其次,如果你不懂前端基础知识, ...
- 性能测试必备命令(1)- free
性能测试必备的 Linux 命令系列,可以看下面链接的文章哦 https://www.cnblogs.com/poloyy/category/1819490.html 介绍 显示系统的内存使用情况 语 ...
- 密钥交换协议之IKEv2
1. IKEv2 1.1 IKEv2简介 IKEv2(Internet Key Exchange Version 2,互联网密钥交换协议第 2 版)是第 1 版本的 IKE 协议(本文简称 IKEv1 ...
- openswan专栏序言
openswan专栏序言 "一杯茶,一包烟,一个bug解一天!!!". 2020年春季,正值新冠病毒在全球肆虐之际,美国的疫情已经相当的严峻,每天仍以3万速度狂奔.而国内的疫情 ...
- 完蛋,公司被一条 update 语句干趴了!
大家好,我是小林. 昨晚在群划水的时候,看到有位读者说了这么一件事. 在这里插入图片描述 大概就是,在线上执行一条 update 语句修改数据库数据的时候,where 条件没有带上索引,导致业务直接崩 ...