QWQ菜的真实。

首先来看这个题。

很显然能得到一个朴素的\(dp\)柿子

\[dp[i]=max(dp[i],dp[j]+(sum[i]-sum[j])^2)
\]

但是因为\(n\le 500000\),所以\(n^2\)一定是过不了的。

考虑应该怎么优化。

考虑什么时候存在一个\(j>k且j比k更优秀\)

\[dp[j]+(sum[i]-sum[j])^2<dp[k]+(sum[i]-sum[k])^2
\]

我们进行化简

\[2\times s[i] \times (s[j]-s[k]) > dp[j]+sum[j]^2-dp[k]-sum[k]^2
\]

由于权值都是正数,所以\(s[j]-s[k]>0\)

我们设\(f[x]=sum[x]^2+dp[x]\)

则上述柿子等于$$2\times s[i]>\frac{f[j]-f[k]}{s[j]-s[k]}$$

观察到右边这个柿子是一个斜率的形式。

我们可以直接用单调队列维护一个下凸壳。

对于每次插入一个点,运用叉积进行\(check\),保证斜率是单调不降的。

int chacheng(Point x,Point y)
{
return x.x*y.y-y.x*x.y;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=(k.x-i.x);
x.y=(k.y-i.y);
y.x=(k.x-j.x);
y.y=(k.y-j.y);
if (chacheng(x,y)<=0) return true;
return false;
// if ((double)(k.y-j.y)/(double)(k.x-j.x)<(double)(j.y-i.y)/(double)(j.x-i.x)) return true;
//return false;
}
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}

删除的话,只需要通过上面那个柿子,若存在\(q[head+1]比q[head]\)优秀,就弹出队首元素

void pop(int lim)
{
while (tail>=head+1 && (q[head+1].y-q[head].y)<=lim*(q[head+1].x-q[head].x)) head++;
}

剩下的就是\(dp\)部分

qwq因为一些奇奇怪怪的问题\(WA\)了一上午

xtbl

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
#include<map>
#include<set>
#define mk make_pair
#define ll long long
#define int long long
using namespace std;
inline int read()
{
int x=0,f=1;char ch=getchar();
while (!isdigit(ch)) {if (ch=='-') f=-1;ch=getchar();}
while (isdigit(ch)) {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return x*f;
}
const int maxn = 1e6+1e2;
struct Point{
int x,y;
};
Point q[maxn];
int dp[maxn];
int sum[maxn];
int val[maxn];
int n,m;
int head=1,tail=0;
int chacheng(Point x,Point y)
{
return x.x*y.y-y.x*x.y;
}
bool count(Point i,Point j,Point k)
{
Point x,y;
x.x=(k.x-i.x);
x.y=(k.y-i.y);
y.x=(k.x-j.x);
y.y=(k.y-j.y);
if (chacheng(x,y)<=0) return true;
return false;
// if ((double)(k.y-j.y)/(double)(k.x-j.x)<(double)(j.y-i.y)/(double)(j.x-i.x)) return true;
//return false;
}
void push(Point x)
{
while (tail>=head+1 && count(q[tail-1],q[tail],x)) tail--;
q[++tail]=x;
}
void pop(int lim)
{
while (tail>=head+1 && (q[head+1].y-q[head].y)<=lim*(q[head+1].x-q[head].x)) head++;
}
signed main()
{
while (scanf("%lld%lld",&n,&m)!=EOF)
{
memset(q,0,sizeof(q));
memset(dp,0,sizeof(dp));
memset(sum,0,sizeof(sum));
head=1,tail=0;
//n=read();m=read();
for (int i=1;i<=n;i++) val[i]=read();
for (int i=1;i<=n;i++) sum[i]=sum[i-1]+val[i];
dp[0]=0;
push((Point){0,0});
for (int i=1;i<=n;i++)
{
pop(2ll*sum[i]);
dp[i]=q[head].y-q[head].x*q[head].x+m+(sum[i]-q[head].x)*(sum[i]-q[head].x);
push((Point){sum[i],dp[i]+sum[i]*sum[i]});
//cout<<i<<" "<<dp[i]<<" "<<q[head].x<<" "<<q[head].y<<" "<<head<<" "<<tail<<endl;
}
cout<<dp[n]<<"\n";
}
return 0;
}

hdu3507 斜率优化学习笔记(斜率优化+dp)的更多相关文章

  1. 深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam)

    深度学习笔记:优化方法总结(BGD,SGD,Momentum,AdaGrad,RMSProp,Adam) 深度学习笔记(一):logistic分类 深度学习笔记(二):简单神经网络,后向传播算法及实现 ...

  2. 学习笔记·斜率优化 [HNOI2008]玩具装箱

    \(qwq\)今天\(rqy\)给窝萌这些蒟蒻讲了斜率优化--大概是他掉打窝萌掉打累了吧顺便偷了\(rqy\)讲课用的图 \(Step \ \ 1\) 一点小转化 事实上斜率优化是专门用来处理这样一类 ...

  3. KVM性能优化学习笔记

    本学习笔记系列都是采用CentOS6.x操作系统,KVM虚拟机的管理也是采用virsh方式,网上的很多的文章都基于ubuntu高版本内核下,KVM的一些新的特性支持更好,本文只是记录了CentOS6. ...

  4. 深挖计算机基础:Linux性能优化学习笔记

    参考极客时间专栏<Linux性能优化实战>学习笔记 一.CPU性能:13讲 Linux性能优化实战学习笔记:第二讲 Linux性能优化实战学习笔记:第三讲 Linux性能优化实战学习笔记: ...

  5. Pandas 性能优化 学习笔记

    摘要 本文介绍了使用 Pandas 进行数据挖掘时常用的加速技巧. 实验环境 import numpy as np import pandas as pd print(np.__version__) ...

  6. HIVE优化学习笔记

    概述 之前写过关于hive的已经有两篇随笔了,但是作者依然还是一枚小白,现在把那些杂七杂八的总结一下,供以后查阅和总结.今天的文章介绍一下hive的优化.hive是好多公司都在使用的东西,也有好多大公 ...

  7. 《Java程序性能优化》学习笔记 设计优化

    豆瓣读书:http://book.douban.com/subject/19969386/ 第一章 Java性能调优概述 1.性能的参考指标 执行时间: CPU时间: 内存分配: 磁盘吞吐量: 网络吞 ...

  8. mysql 学习笔记5-- 数据库优化

    ext4:(rw,noatime,nodiratime,nobarrier,data=ordered)xfs: (rw,noatime,nodiratim,nobarrier,logbufs=8,lo ...

  9. DP斜率优化学习笔记

    斜率优化 首先,可以进行斜率优化的DP方程式一般式为$dp[i]=\max_{j=1}^{i-1}/\min_{j=1}^{i-1}\{a(i)*x(j)+b(i)*y(j)\}$ 其中$a(j)$和 ...

随机推荐

  1. jquery mobile cdn

    <head> <link rel="stylesheet" href="http://code.jquery.com/mobile/1.3.2/jque ...

  2. .Net中异步任务的取消和监控

    相关类型: CancellationTokenSource 主要用来创建或取消令牌 CancellationToken 监听令牌状态,注册令牌取消事件 OperationCanceledExcepti ...

  3. 使用Keepalived实现Nginx的自动重启及双主热备高可用

    1.概述 之前我们使用Keepalived实现了Nginx服务的双机主备高可用,但是有几个问题没有解决,今天一起探讨一下. 1)在双机主备机制中,Keepalived服务如果宕了,会自动启用备机进行服 ...

  4. 前后端数据交互(六)——ajax 、fetch 和 axios 优缺点及比较

    一.ajax.fetch 和 axios 简介 1.1.ajax ajax是最早出现发送后端请求的技术,属于原生 js .ajax使用源码,请点击<原生 ajax 请求详解>查看.一般使用 ...

  5. el-upload + accept限制上传的文件格式

    /**  * kevin 2021/1/4  * @description el-upload + accept限制上传的文件格式  * @param e 校验的类型  * @returns {str ...

  6. vue父组件中调用子组件的方法

    Vue项目中如何在父组件中直接调用子组件的方法: 方案一:通过ref直接调用子组件的方法: //父组件中 <template> <div> <Button @click= ...

  7. C语言中的符号重载

    摘自<C专家编程>第二章37页                     C语言中符号的重载 符号 意义 static 在函数内部,表示该变量的值在各个调用间一直保持延续性在函数这一级,表示 ...

  8. 机器学习——K-Means算法

    1 基础知识 相似度或距离 假设有 $m$ 个样本,每个样本由 $n$ 个属性的特征向量组成,样本合集 可以用矩阵 $X$ 表示 $X=[x_{ij}]_{mn}=\begin{bmatrix}x_{ ...

  9. POJ3625Building Roads

    Building Roads Description Farmer John had just acquired several new farms! He wants to connect the ...

  10. 测试开发【提测平台】分享10-Element UI抽屉和表单校验&增改接口合并实现应用管理

    微信搜索[大奇测试开],关注这个坚持分享测试开发干货的家伙. 开篇说个小讨论,一个群里聊天聊到关于更新篇章的长度,是小篇幅多次,还是每次按照一个小完整的功能,我个人的是按照后种来的,主要的思考就是希望 ...