定义

对于一个正整数 \(n\) ,若完全分解之后不存在指数 \(=1\) ,则称 \(n\) 为 \(\text{Powerful Number}\) 。

可以发现的是,在 \([1,n]\) 中,\(\text{Powerful Number}\) 的数量是 \(\sqrt n\) 级别的。

Powerful Number 在求积性函数前缀和中的应用

假设给出积性函数 \(f(x)\) 要求 \(\sum_{i=1}^{n} f(i)\),我们可以考虑引入一个拟合函数 \(g(x)\) 使得 \(\forall x\in \mathbb{P},g(x)=f(x)\) 且 \(g(x)\) 亦为积性函数。同时,我们还需要保证 \(g(x)\) 的前缀和是一个好求的东西。

令 \(h=f\times g^{-1}\),那么我们就有:

\[\sum_{i=1}^{n} f(i)=\sum_{i=1}^{n} h(i)\sum_{j=1}^{\lfloor\frac{n}{i}\rfloor} g(j)
\]

而我们在质数 \(p\) 处存在 \(f(p)=h(p)+g(p)=g(p)\),所以 \(h(p)=0\),那么也就是说所有非 \(\text{Powerful Number}\) 的 \(h\) 均为 \(0\) 。所以我们就可以暴力搜索找出 \([1,n]\) 中的 \(\text{Powerful Number}\) ,然后求个前缀和就好了。

Powerful Number 学习笔记的更多相关文章

  1. [javascript|基本概念|Number]学习笔记

    Number类型的值:整数/浮点数值 整数 十进制  e.g.: var intNum = 50; 八进制  (严格模式下无效,解析错误)字面值首位必须是0,之后的数字序列为0-7  e.g.: va ...

  2. 卡特兰数(Catalan Number) 学习笔记

    一.三个简单的问题 1.给定一串长为2n的01序列,其中0和1的数量相等,满足任意前缀中0的个数不少于1的个数,求序列的个数 2.给出一串长为n的序列,按顺序将他们进栈,随意出栈,求最后进出栈的方案 ...

  3. Powerful Number 筛学习笔记

    Powerful Number 筛学习笔记 用途 \(Powerful\ number\) 筛可以用来求出一类积性函数的前缀和,最快可以达到根号复杂度. 实现 \(Powerful\ number\) ...

  4. javascript学习笔记(四) Number 数字类型

    数字格式化方法toFixed().toExponential().toPrecision(),三个方法都四舍五入 toFixed() 方法指定小数位个数  toExponential() 方法 用科学 ...

  5. Python学习笔记 (2.1)标准数据类型之Number(数字)

    Python3中,数字分为四种——int,float,bool,complex int(整型) 和数学上的整数表示没啥区别,没有大小限制(多棒啊,不用写整数高精了),可正可负.还可表示16进制,以 0 ...

  6. [笔记] Powerful Number 筛

    定义 Powerful Number(以下简称 PN)筛类似于杜教筛,可以拿来求一些积性函数的前缀和. 要求: 假设现在要求积性函数 \(f\) 的前缀和 \(F(n)=\sum_{i=1}^nf(i ...

  7. 学习笔记之pandas

    Python Data Analysis Library — pandas: Python Data Analysis Library https://pandas.pydata.org/ panda ...

  8. HTML学习笔记

    HTML学习笔记 2016年12月15日整理 Chapter1 URL(scheme://host.domain:port/path/filename) scheme: 定义因特网服务的类型,常见的为 ...

  9. JavaScript权威设计--JavaScript函数(简要学习笔记十一)

    1.函数调用的四种方式 第三种:构造函数调用 如果构造函数调用在圆括号内包含一组实参列表,先计算这些实参表达式,然后传入函数内.这和函数调用和方法调用是一致的.但如果构造函数没有形参,JavaScri ...

随机推荐

  1. Vue.JS快速上手(Vue-router 实现SPA 开发)

    一.什么是路由 URL -> 映射 -> 组件 Hash+onhashchange History.pushstate+replaceState+onpopstate 二.准备工作 组件 ...

  2. vue-父子组件之传值和单项数据流问题

    前言 我们知道 vue 中父子组件的核心概念是单项数据流问题,props 是单项传递的.那究竟什么是单项数据流问题,这篇文章来总结一下关于这个知识点的学习笔记. 正文 1.父组件传值给子组件 < ...

  3. multipass指定virualbox搭建k8s集群(选择docker作为默认容器)

    目录 前言 步骤 初始化三台虚拟机 统一安装docker 修改docker镜像源 查看masterIP 安装master节点(重点设置) 查看master的token 安装worker节点 测试 部署 ...

  4. 如何在MacBook M1上无缝切换Win11和MacOS?

    2020年,MacBook M1发布后,由于其夸张到离谱的性能表现,苹果又一次在知名度和销量上真正实现了双丰收. 抛开M1和MacOS其他的华丽特色不谈,很多习惯了Windows系统的同学,在换了这台 ...

  5. python代码检查工具(静态代码审查)

    python静态代码检查 我们知道python是一门脚本语言,不像C#/Java等编译型语言可以在编译阶段就报出代码错误,脚本语言往往需要在运行期执行到这段代码时才会抛出代码错误. 那么在实际商业项目 ...

  6. MySQL(四)——

    MySQL官方对索引的定义:索引(Index)是帮助MySQL高效获取数据的数据结构.因此索引的本质就是数据结构.索引的目的在于提高查询效率,可类比字典.书籍的目录等这种形式. 可简单理解为" ...

  7. 利用Struts2拦截器完成文件上传功能

    Struts2的图片上传以及页面展示图片 在上次的CRUD基础上加上图片上传功能 (https://www.cnblogs.com/liuwenwu9527/p/11108611.html) 文件上传 ...

  8. shell脚本书写

    #!/bin/bash #指定脚本默认使用的命令解释器 第1行 幻数 #!/usr/bin/python #!/bin/awk #!/bin/sed

  9. 2021-06-14 BZOJ4919:大根堆

    BZOJ4919:大根堆 Description: 题目描述   给定一棵n个节点的有根树,编号依次为1到n,其中1号点为根节点.每个点有一个权值v_i. 你需要将这棵树转化成一个大根堆.确切地说,你 ...

  10. 第07课:GDB 常用命令详解(下)

    本课的核心内容: disassemble 命令 set args 和 show args 命令 tbreak 命令 watch 命令 display 命令 disassemble 命令 当进行一些高级 ...