体积与边精确积分DGM方法
Triangular DGM
1. Basis functions
decomposing the domain \(\Omega\) into \(N_e\) conforming
non-overlapping triangular elements \(\Omega_e\).
\Omega = \bigcup_{e = 1}^{N_e} \Omega_e
\end{equation}\]
nonsingular mapping \(x = \Psi(\mathbf{\xi})\) which defines a transformation from the physical Cartesian coordinate system to the local reference coordinate system defined on the reference triangle.
local elementwise solution \(\mathbf{q}\) by an N th order polynomial in \(\mathbf{\xi}\) as
\mathbf{q}_N (\mathbf{\xi}) = \sum_{i = 1}^{M_N} \psi_i (\mathbf{\xi}) \mathbf{q}_N (\mathbf{\xi}_i)
\end{equation}\]
where \(\mathbf{\xi}_i\) represents \(M = \frac{1}{2} ( N + 1)( N + 2)\) interpolation points and \(\psi_i (\mathbf{\xi})\) are the associatedmultivariate Lagrange polynomials.
an explicit formula for the Lagrange basis —— reference to an easily constructed orthonormal PKD polynomial basis and the generalized Vandermonde matrix.
通过正交多项式和Vandermonde构造参考单元上Lagrange基函数。
2. Integration
2.1. Area integrals
\(\int_{\Omega_e} f(x) g(x) dx = \sum_{i = 1}^{M_C} \omega_i^e \left| J^e(\mathbf{\xi}_i) \right| f(\mathbf{\xi}_i) g(\mathbf{\xi}_i)\)
where \(M_C\) is a function of \(C\) which represents the order of the cubature approximation.
2.2. Boundary integrals
\(\int_{\Gamma_e} f(x) g(x) dx = \sum_{i = 0}^{Q} \omega_i^s \left| J^s(\mathbf{\xi}_i) \right| f(\mathbf{\xi}_i) g(\mathbf{\xi}_i)\)
where \(Q\) represents the order of the quadrature approximation. Using the Gauss quadrature, we
can use \(Q = N\) to achieve order \(2N\) accuracy.
3. Tangent and normal vectors of the element edges
4. Semi-discrete equations
5. Matrix form of the semi-discrete equations
5.1. Elimination of the mass matrix
将方程左乘质量矩阵的逆并除以雅克比系数,可得
\frac{\partial \mathbf{q}^e_i}{\partial t} + \left( \hat{D}_{ij}^{\xi} \xi_x^e + \hat{D}_{ij}^{\eta} \eta_x^e \right) \mathbf{f}_j^e + \left( \hat{D}_{ij}^{\xi} \xi_y^e + \hat{D}_{ij}^{\eta} \eta_y^e \right) \mathbf{g}_j^e - S_i^e = \frac{\left| J^s \right|}{\left| J^e \right|} \hat{M}_{ij}^s \left[ n_x^s \left( \mathbf{f}^e - \mathbf{f}^* \right)_j + n_y^s \left( \mathbf{g}^e - \mathbf{g}^* \right)_j \right]
\end{equation}\]
where the matrices are defined as
\begin{array}{lll}
\hat{D}_{ij}^{\xi} = M_{ik}^{-1} D_{kj}^{\xi}, & \hat{D}_{ij}^{\eta} = M_{ik}^{-1} D_{kj}^{\eta}, &
\hat{M}_{ij}^{s} = M_{ik}^{-1} M_{kj}^{\xi},
\end{array}
\end{equation}\]
where
\begin{array}{ll}
M_{ij} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \phi_{jk}, & M_{ij}^s = \sum_{k = 1}^{M_Q} \omega_k \psi_{ik} \phi_{jk} \cr
D_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \phi_{jk}}{\partial \xi}, & D_{ij}^{\eta} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \phi_{jk}}{\partial \eta}
\end{array}
\end{equation}\]
\(M_C\) and \(M_Q\) denote the number of cubature (two dimensional) and quadrature (one dimensional) integration points required to achieve order 2N accuracy, and \(\psi_{ik}\) represents the function \(\psi\) at the \(i=1, \cdots,M_N\) interpolation points evaluated at the integration point k.
Since the mass matrix is constant (i.e. not a function of x) then, using Equations above, we can move the mass matrix inside the summations which are the discrete representations of the continuous integrals. This then gives
\begin{array}{ll}
\hat{M}_{ij}^{s} = \sum_{k = 1}^{M_Q} \omega_k \hat{\psi}_{ik} \psi_{jk}, & \hat{D}_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \hat{\psi}_{ik} \frac{\partial \psi_{jk}}{\partial \xi}, & \hat{D}_{ij}^{\eta} = \sum_{k = 1}^{M_C} \omega_k \hat{\psi}_{ik} \frac{\partial \psi_{jk}}{\partial \eta}
\end{array}
\end{equation}\]
where
\hat{\psi}_i = M_{ik}^{-1} \psi_k
\end{equation}\]
根据
\(D_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \psi_{jk}}{\partial \xi}\)
我们可以将 \(D_{ij}^{\xi}\) 写为如下矩阵相乘形式
D_{ij}^{\xi} = \begin{bmatrix}
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}
\end{bmatrix}
\end{equation}\]
因此
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}} \cr
\omega_1 \psi_{21}, \omega_2 \psi_{22}, \cdots, \omega_{M_C} \psi_{2{M_C}} \cr
\cdots \cr
\omega_1 \psi_{{M_C}1}, \omega_2 \psi_{{M_C}2}, \cdots, \omega_{M_C} \psi_{{M_C}{M_C}} \cr
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi}, & \frac{\partial \psi_{21}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}1}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi}, & \frac{\partial \psi_{22}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}2}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}, & \frac{\partial \psi_{2{M_C}}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}{M_C}}}{\partial \xi}
\end{bmatrix}\]
因此
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}} \cr
\omega_1 \psi_{21}, \omega_2 \psi_{22}, \cdots, \omega_{M_C} \psi_{2{M_C}} \cr
\cdots \cr
\omega_1 \psi_{{M_C}1}, \omega_2 \psi_{{M_C}2}, \cdots, \omega_{M_C} \psi_{{M_C}{M_C}} \cr
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi}, & \frac{\partial \psi_{21}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}1}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi}, & \frac{\partial \psi_{22}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}2}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}, & \frac{\partial \psi_{2{M_C}}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}{M_C}}}{\partial \xi}
\end{bmatrix}\]
Reference:
[1]: GIRALDO F X, WARBURTON T. A high-order triangular discontinuous Galerkin oceanic shallow water model[J]. International Journal for Numerical Methods in Fluids, 2008, 56: 899–925.
体积与边精确积分DGM方法的更多相关文章
- Window中C++进行精确计时的方法
嗯,程序员一个永恒的追求就是性能吧? 为了衡量性能,自然需要计时. 奈何无论C标准库还是C++标准库,因为通用性的考虑,其time API精度都不高.基本都是毫秒级的. 所以如果要真正精确地衡量程序的 ...
- 减小delphi体积的方法
1.关闭RTTI反射机制 自从Delphi2010中引入了新的RTTI反射机制后,编译出来的程序会变得很大,这是因为默认情况下 Delphi2010 给所有类都加上了反射机制.而我们的工程并不每每都 ...
- 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...
- 积分从入门到放弃<2>
这部分重新从定积分学了 1,lnx 的导数就是x^(-1) = 1/x 那么求∫(1/x)dx = ln|x|+C 2,初值问题.就是求∫f(x)dx = F(x) + C 求C . 3,Houdi ...
- STM32 精确输出PWM脉冲数控制电机(转)
STM32 精确输出PWM脉冲数控制电机 发脉冲两种目的1)速度控制2)位置控制 速度控制目的和模拟量一样,没有什么需要关注的地方发送脉冲方式为PWM,速率稳定而且资源占用少 stm32位置控制需要获 ...
- 浅谈人脸检测之Haar分类器方法
我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...
- JavaScript中判断对象类型方法大全1
我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...
- 浅析人脸检测之Haar分类器方法
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...
- JavaScript中判断对象类型的种种方法
我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...
随机推荐
- 【Java虚拟机3】类加载器
前言 Java虚拟机设计团队有意把类加载阶段中的"通过一个类的全限定名来获取描述该类的二进制字节流"这个动作放到Java虚拟机外部去实现,以便让应用程序自己决定如何去获取所需的类. ...
- JBOSS未授权访问漏洞利用
1. 环境搭建 https://www.cnblogs.com/chengNo1/p/14297387.html 搭建好vulhub平台后 进入对应漏洞目录 cd vulhub/jboss/CVE-2 ...
- CentOS 文件管理
目录 目录管理 目录结构 切换目录 查看目录 创建目录 复制目录 剪切目录 删除目录 文件管理 查看文件 创建文件 复制文件 剪切文件 删除文件 创建链接 目录管理 目录也是一种文件. 蓝色目录,绿色 ...
- [no code][scrum meeting] Alpha 12
项目 内容 会议时间 2020-04-19 会议主题 周总结会议 会议时长 45min 参会人员 全体成员 $( "#cnblogs_post_body" ).catalog() ...
- FastAPI 学习之路(五十五)操作Redis
之前我们分享了操作关系型数据库,具体文章, FastAPI 学习之路(三十二)创建数据库 FastAPI 学习之路(三十三)操作数据库 FastAPI 学习之路(三十四)数据库多表操作 这次我们分享的 ...
- Python课程笔记(一)
由于新冠状病毒的爆发,不得不在家里上网课,开课已经两个礼拜了,今天上完Python课后,准备整理一下最近学习Python的笔记. 人生苦短,我用Python 一.Hello World 初学一门新的语 ...
- 算法:N-皇后问题
一.八皇后问题 八皇后问题是一个以国际象棋为背景的问题:如何能够在8 × 8 的国际象棋棋盘上放置八个皇后(Queen),使得任何一个皇后都无法直接吃掉其他的皇后.为了达到此目的,任两个皇后都不能处于 ...
- 数组中出现次数超过一半的数字 牛客网 剑指Offer
数组中出现次数超过一半的数字 牛客网 剑指Offer 题目描述 数组中有一个数字出现的次数超过数组长度的一半,请找出这个数字.例如输入一个长度为9的数组{1,2,3,2,2,2,5,4,2}.由于数字 ...
- python3.5 安装mysqlclient
python 3.5 安装 mysqlclient 会失败 pip install mysqlclient 注意这里环境中只有python3.5 会出现一大堆红字 编译终止, error: comma ...
- Serverless 工程实践|自建 Apache OpenWhisk 平台
作者 | 刘宇(江昱) 前言:OpenWhisk 是一个开源.无服务器的云平台,可以在运行时容器中通过执行扩展的代码响应各种事件,而无须用户关心相关的基础设施架构. OpenWhisk 简介 Open ...