体积与边精确积分DGM方法
Triangular DGM
1. Basis functions
decomposing the domain \(\Omega\) into \(N_e\) conforming
non-overlapping triangular elements \(\Omega_e\).
\Omega = \bigcup_{e = 1}^{N_e} \Omega_e
\end{equation}\]
nonsingular mapping \(x = \Psi(\mathbf{\xi})\) which defines a transformation from the physical Cartesian coordinate system to the local reference coordinate system defined on the reference triangle.
local elementwise solution \(\mathbf{q}\) by an N th order polynomial in \(\mathbf{\xi}\) as
\mathbf{q}_N (\mathbf{\xi}) = \sum_{i = 1}^{M_N} \psi_i (\mathbf{\xi}) \mathbf{q}_N (\mathbf{\xi}_i)
\end{equation}\]
where \(\mathbf{\xi}_i\) represents \(M = \frac{1}{2} ( N + 1)( N + 2)\) interpolation points and \(\psi_i (\mathbf{\xi})\) are the associatedmultivariate Lagrange polynomials.
an explicit formula for the Lagrange basis —— reference to an easily constructed orthonormal PKD polynomial basis and the generalized Vandermonde matrix.
通过正交多项式和Vandermonde构造参考单元上Lagrange基函数。
2. Integration
2.1. Area integrals
\(\int_{\Omega_e} f(x) g(x) dx = \sum_{i = 1}^{M_C} \omega_i^e \left| J^e(\mathbf{\xi}_i) \right| f(\mathbf{\xi}_i) g(\mathbf{\xi}_i)\)
where \(M_C\) is a function of \(C\) which represents the order of the cubature approximation.
2.2. Boundary integrals
\(\int_{\Gamma_e} f(x) g(x) dx = \sum_{i = 0}^{Q} \omega_i^s \left| J^s(\mathbf{\xi}_i) \right| f(\mathbf{\xi}_i) g(\mathbf{\xi}_i)\)
where \(Q\) represents the order of the quadrature approximation. Using the Gauss quadrature, we
can use \(Q = N\) to achieve order \(2N\) accuracy.
3. Tangent and normal vectors of the element edges
4. Semi-discrete equations
5. Matrix form of the semi-discrete equations
5.1. Elimination of the mass matrix
将方程左乘质量矩阵的逆并除以雅克比系数,可得
\frac{\partial \mathbf{q}^e_i}{\partial t} + \left( \hat{D}_{ij}^{\xi} \xi_x^e + \hat{D}_{ij}^{\eta} \eta_x^e \right) \mathbf{f}_j^e + \left( \hat{D}_{ij}^{\xi} \xi_y^e + \hat{D}_{ij}^{\eta} \eta_y^e \right) \mathbf{g}_j^e - S_i^e = \frac{\left| J^s \right|}{\left| J^e \right|} \hat{M}_{ij}^s \left[ n_x^s \left( \mathbf{f}^e - \mathbf{f}^* \right)_j + n_y^s \left( \mathbf{g}^e - \mathbf{g}^* \right)_j \right]
\end{equation}\]
where the matrices are defined as
\begin{array}{lll}
\hat{D}_{ij}^{\xi} = M_{ik}^{-1} D_{kj}^{\xi}, & \hat{D}_{ij}^{\eta} = M_{ik}^{-1} D_{kj}^{\eta}, &
\hat{M}_{ij}^{s} = M_{ik}^{-1} M_{kj}^{\xi},
\end{array}
\end{equation}\]
where
\begin{array}{ll}
M_{ij} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \phi_{jk}, & M_{ij}^s = \sum_{k = 1}^{M_Q} \omega_k \psi_{ik} \phi_{jk} \cr
D_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \phi_{jk}}{\partial \xi}, & D_{ij}^{\eta} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \phi_{jk}}{\partial \eta}
\end{array}
\end{equation}\]
\(M_C\) and \(M_Q\) denote the number of cubature (two dimensional) and quadrature (one dimensional) integration points required to achieve order 2N accuracy, and \(\psi_{ik}\) represents the function \(\psi\) at the \(i=1, \cdots,M_N\) interpolation points evaluated at the integration point k.
Since the mass matrix is constant (i.e. not a function of x) then, using Equations above, we can move the mass matrix inside the summations which are the discrete representations of the continuous integrals. This then gives
\begin{array}{ll}
\hat{M}_{ij}^{s} = \sum_{k = 1}^{M_Q} \omega_k \hat{\psi}_{ik} \psi_{jk}, & \hat{D}_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \hat{\psi}_{ik} \frac{\partial \psi_{jk}}{\partial \xi}, & \hat{D}_{ij}^{\eta} = \sum_{k = 1}^{M_C} \omega_k \hat{\psi}_{ik} \frac{\partial \psi_{jk}}{\partial \eta}
\end{array}
\end{equation}\]
where
\hat{\psi}_i = M_{ik}^{-1} \psi_k
\end{equation}\]
根据
\(D_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \psi_{jk}}{\partial \xi}\)
我们可以将 \(D_{ij}^{\xi}\) 写为如下矩阵相乘形式
D_{ij}^{\xi} = \begin{bmatrix}
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}
\end{bmatrix}
\end{equation}\]
因此
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}} \cr
\omega_1 \psi_{21}, \omega_2 \psi_{22}, \cdots, \omega_{M_C} \psi_{2{M_C}} \cr
\cdots \cr
\omega_1 \psi_{{M_C}1}, \omega_2 \psi_{{M_C}2}, \cdots, \omega_{M_C} \psi_{{M_C}{M_C}} \cr
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi}, & \frac{\partial \psi_{21}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}1}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi}, & \frac{\partial \psi_{22}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}2}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}, & \frac{\partial \psi_{2{M_C}}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}{M_C}}}{\partial \xi}
\end{bmatrix}\]
因此
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}} \cr
\omega_1 \psi_{21}, \omega_2 \psi_{22}, \cdots, \omega_{M_C} \psi_{2{M_C}} \cr
\cdots \cr
\omega_1 \psi_{{M_C}1}, \omega_2 \psi_{{M_C}2}, \cdots, \omega_{M_C} \psi_{{M_C}{M_C}} \cr
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi}, & \frac{\partial \psi_{21}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}1}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi}, & \frac{\partial \psi_{22}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}2}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}, & \frac{\partial \psi_{2{M_C}}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}{M_C}}}{\partial \xi}
\end{bmatrix}\]
Reference:
[1]: GIRALDO F X, WARBURTON T. A high-order triangular discontinuous Galerkin oceanic shallow water model[J]. International Journal for Numerical Methods in Fluids, 2008, 56: 899–925.
体积与边精确积分DGM方法的更多相关文章
- Window中C++进行精确计时的方法
嗯,程序员一个永恒的追求就是性能吧? 为了衡量性能,自然需要计时. 奈何无论C标准库还是C++标准库,因为通用性的考虑,其time API精度都不高.基本都是毫秒级的. 所以如果要真正精确地衡量程序的 ...
- 减小delphi体积的方法
1.关闭RTTI反射机制 自从Delphi2010中引入了新的RTTI反射机制后,编译出来的程序会变得很大,这是因为默认情况下 Delphi2010 给所有类都加上了反射机制.而我们的工程并不每每都 ...
- 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联
浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...
- 积分从入门到放弃<2>
这部分重新从定积分学了 1,lnx 的导数就是x^(-1) = 1/x 那么求∫(1/x)dx = ln|x|+C 2,初值问题.就是求∫f(x)dx = F(x) + C 求C . 3,Houdi ...
- STM32 精确输出PWM脉冲数控制电机(转)
STM32 精确输出PWM脉冲数控制电机 发脉冲两种目的1)速度控制2)位置控制 速度控制目的和模拟量一样,没有什么需要关注的地方发送脉冲方式为PWM,速率稳定而且资源占用少 stm32位置控制需要获 ...
- 浅谈人脸检测之Haar分类器方法
我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...
- JavaScript中判断对象类型方法大全1
我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...
- 浅析人脸检测之Haar分类器方法
一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...
- JavaScript中判断对象类型的种种方法
我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...
随机推荐
- 第二次Alpha Scrum Meeting
本次会议为Alpha阶段第二次Scrum Meeting会议 会议概要 会议时间:2021年4月24日 会议地点:线上会议 会议时长:30min 会议内容简介:本次会议主要由每个人展示自己目前完成的工 ...
- [技术博客]在团队中使用Pull Request来管理代码
在团队中使用Pull Request来管理代码 前言 在参加多人共同开发项目,且选用Git作为代码托管工具的时候,我们不免会遇到分支冲突.覆盖.合并等问题.显然,因为同一个仓库是属于大家的,所以每个人 ...
- 开关电源(DC-DC)与LDO电源的区别---纹波
https://blog.csdn.net/edadoc2013/article/details/78435775
- HttpContext.Current.Request.Url 地址:获取域名
假设当前页完整地址是:http://www.test.com/aaa/bbb.aspx?id=5&name=kelli 协议名----http://域名 ---- www.test.com站 ...
- PCIE基本知识
转载:https://zhuanlan.zhihu.com/p/139656925 前言 之前主要都在做FPGA算法层面的东西,最近觉得对于接口方面的知识比较欠缺,打算以PCI-E为例来系统的学习一下 ...
- C#写TXT文档
//C#写TXT文档 String strDir = System.IO.Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAs ...
- DeWeb发展历程! 从2015年开始
有位朋友问: [高中]长兴(667499XX) 2021-01-15 15:52:11 deweb会长期做吗 我查了一下,发现deweb最早从2015开始,算起来已经做了5~6年了,目前已日臻成熟!
- Ubuntu安装数据库
1.通过命令行安装:sudo apt-get install mysql-client mysql-server 2.安装过程中输入数据库密码("123456",root) 3.使 ...
- win10+MX350显卡+CUDA10.2+PyTorch 安装过程记录 深度学习环境配置
https://blog.csdn.net/m0_37867091/article/details/105788637
- harbor安装高可用
harbor架构 下载地址https://github.com/goharbor/harbor/ 高可用架构 解压压缩包 tar -xvf harbor-offline-installer-v1.10 ...