Triangular DGM

1. Basis functions

decomposing the domain \(\Omega\) into \(N_e\) conforming

non-overlapping triangular elements \(\Omega_e\).

\[\begin{equation}
\Omega = \bigcup_{e = 1}^{N_e} \Omega_e
\end{equation}\]

nonsingular mapping \(x = \Psi(\mathbf{\xi})\) which defines a transformation from the physical Cartesian coordinate system to the local reference coordinate system defined on the reference triangle.

local elementwise solution \(\mathbf{q}\) by an N th order polynomial in \(\mathbf{\xi}\) as

\[\begin{equation}
\mathbf{q}_N (\mathbf{\xi}) = \sum_{i = 1}^{M_N} \psi_i (\mathbf{\xi}) \mathbf{q}_N (\mathbf{\xi}_i)
\end{equation}\]

where \(\mathbf{\xi}_i\) represents \(M = \frac{1}{2} ( N + 1)( N + 2)\) interpolation points and \(\psi_i (\mathbf{\xi})\) are the associatedmultivariate Lagrange polynomials.

an explicit formula for the Lagrange basis —— reference to an easily constructed orthonormal PKD polynomial basis and the generalized Vandermonde matrix.

通过正交多项式和Vandermonde构造参考单元上Lagrange基函数。

2. Integration

2.1. Area integrals

\(\int_{\Omega_e} f(x) g(x) dx = \sum_{i = 1}^{M_C} \omega_i^e \left| J^e(\mathbf{\xi}_i) \right| f(\mathbf{\xi}_i) g(\mathbf{\xi}_i)\)

where \(M_C\) is a function of \(C\) which represents the order of the cubature approximation.

2.2. Boundary integrals

\(\int_{\Gamma_e} f(x) g(x) dx = \sum_{i = 0}^{Q} \omega_i^s \left| J^s(\mathbf{\xi}_i) \right| f(\mathbf{\xi}_i) g(\mathbf{\xi}_i)\)

where \(Q\) represents the order of the quadrature approximation. Using the Gauss quadrature, we

can use \(Q = N\) to achieve order \(2N\) accuracy.

3. Tangent and normal vectors of the element edges

4. Semi-discrete equations

5. Matrix form of the semi-discrete equations

5.1. Elimination of the mass matrix

将方程左乘质量矩阵的逆并除以雅克比系数,可得

\[\begin{equation}
\frac{\partial \mathbf{q}^e_i}{\partial t} + \left( \hat{D}_{ij}^{\xi} \xi_x^e + \hat{D}_{ij}^{\eta} \eta_x^e \right) \mathbf{f}_j^e + \left( \hat{D}_{ij}^{\xi} \xi_y^e + \hat{D}_{ij}^{\eta} \eta_y^e \right) \mathbf{g}_j^e - S_i^e = \frac{\left| J^s \right|}{\left| J^e \right|} \hat{M}_{ij}^s \left[ n_x^s \left( \mathbf{f}^e - \mathbf{f}^* \right)_j + n_y^s \left( \mathbf{g}^e - \mathbf{g}^* \right)_j \right]
\end{equation}\]

where the matrices are defined as

\[\begin{equation}
\begin{array}{lll}
\hat{D}_{ij}^{\xi} = M_{ik}^{-1} D_{kj}^{\xi}, & \hat{D}_{ij}^{\eta} = M_{ik}^{-1} D_{kj}^{\eta}, &
\hat{M}_{ij}^{s} = M_{ik}^{-1} M_{kj}^{\xi},
\end{array}
\end{equation}\]

where

\[\begin{equation}
\begin{array}{ll}
M_{ij} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \phi_{jk}, & M_{ij}^s = \sum_{k = 1}^{M_Q} \omega_k \psi_{ik} \phi_{jk} \cr
D_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \phi_{jk}}{\partial \xi}, & D_{ij}^{\eta} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \phi_{jk}}{\partial \eta}
\end{array}
\end{equation}\]

\(M_C\) and \(M_Q\) denote the number of cubature (two dimensional) and quadrature (one dimensional) integration points required to achieve order 2N accuracy, and \(\psi_{ik}\) represents the function \(\psi\) at the \(i=1, \cdots,M_N\) interpolation points evaluated at the integration point k.

Since the mass matrix is constant (i.e. not a function of x) then, using Equations above, we can move the mass matrix inside the summations which are the discrete representations of the continuous integrals. This then gives

\[\begin{equation}
\begin{array}{ll}
\hat{M}_{ij}^{s} = \sum_{k = 1}^{M_Q} \omega_k \hat{\psi}_{ik} \psi_{jk}, & \hat{D}_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \hat{\psi}_{ik} \frac{\partial \psi_{jk}}{\partial \xi}, & \hat{D}_{ij}^{\eta} = \sum_{k = 1}^{M_C} \omega_k \hat{\psi}_{ik} \frac{\partial \psi_{jk}}{\partial \eta}
\end{array}
\end{equation}\]

where

\[\begin{equation}
\hat{\psi}_i = M_{ik}^{-1} \psi_k
\end{equation}\]

根据

\(D_{ij}^{\xi} = \sum_{k = 1}^{M_C} \omega_k \psi_{ik} \frac{\partial \psi_{jk}}{\partial \xi}\)

我们可以将 \(D_{ij}^{\xi}\) 写为如下矩阵相乘形式

\[\begin{equation}
D_{ij}^{\xi} = \begin{bmatrix}
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}}
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}
\end{bmatrix}
\end{equation}\]

因此

\[D^{\xi} = \begin{bmatrix}
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}} \cr
\omega_1 \psi_{21}, \omega_2 \psi_{22}, \cdots, \omega_{M_C} \psi_{2{M_C}} \cr
\cdots \cr
\omega_1 \psi_{{M_C}1}, \omega_2 \psi_{{M_C}2}, \cdots, \omega_{M_C} \psi_{{M_C}{M_C}} \cr
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi}, & \frac{\partial \psi_{21}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}1}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi}, & \frac{\partial \psi_{22}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}2}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}, & \frac{\partial \psi_{2{M_C}}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}{M_C}}}{\partial \xi}
\end{bmatrix}\]

因此

\[\hat{D}^{\xi} = M^{-1} \begin{bmatrix}
\omega_1 \psi_{11}, \omega_2 \psi_{12}, \cdots, \omega_{M_C} \psi_{1{M_C}} \cr
\omega_1 \psi_{21}, \omega_2 \psi_{22}, \cdots, \omega_{M_C} \psi_{2{M_C}} \cr
\cdots \cr
\omega_1 \psi_{{M_C}1}, \omega_2 \psi_{{M_C}2}, \cdots, \omega_{M_C} \psi_{{M_C}{M_C}} \cr
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial \xi}, & \frac{\partial \psi_{21}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}1}}{\partial \xi} \cr \frac{\partial \psi_{12}}{\partial \xi}, & \frac{\partial \psi_{22}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}2}}{\partial \xi} \cr
\cdots \cr
\frac{\partial \psi_{1{M_C}}}{\partial \xi}, & \frac{\partial \psi_{2{M_C}}}{\partial \xi}, & \cdots & \frac{\partial \psi_{{M_C}{M_C}}}{\partial \xi}
\end{bmatrix}\]

Reference:

[1]: GIRALDO F X, WARBURTON T. A high-order triangular discontinuous Galerkin oceanic shallow water model[J]. International Journal for Numerical Methods in Fluids, 2008, 56: 899–925.

体积与边精确积分DGM方法的更多相关文章

  1. Window中C++进行精确计时的方法

    嗯,程序员一个永恒的追求就是性能吧? 为了衡量性能,自然需要计时. 奈何无论C标准库还是C++标准库,因为通用性的考虑,其time API精度都不高.基本都是毫秒级的. 所以如果要真正精确地衡量程序的 ...

  2. 减小delphi体积的方法

    1.关闭RTTI反射机制  自从Delphi2010中引入了新的RTTI反射机制后,编译出来的程序会变得很大,这是因为默认情况下 Delphi2010 给所有类都加上了反射机制.而我们的工程并不每每都 ...

  3. 浅析人脸检测之Haar分类器方法:Haar特征、积分图、 AdaBoost 、级联

    浅析人脸检测之Haar分类器方法 一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸 ...

  4. 积分从入门到放弃<2>

    这部分重新从定积分学了 1,lnx 的导数就是x^(-1) = 1/x 那么求∫(1/x)dx = ln|x|+C  2,初值问题.就是求∫f(x)dx = F(x) + C 求C . 3,Houdi ...

  5. STM32 精确输出PWM脉冲数控制电机(转)

    STM32 精确输出PWM脉冲数控制电机 发脉冲两种目的1)速度控制2)位置控制 速度控制目的和模拟量一样,没有什么需要关注的地方发送脉冲方式为PWM,速率稳定而且资源占用少 stm32位置控制需要获 ...

  6. 浅谈人脸检测之Haar分类器方法

    我们要探讨的Haar分类器实际上是Boosting算法(提升算法)的一个应用,Haar分类器用到了Boosting算法中的AdaBoost算法,只是把AdaBoost算法训练出的强分类器进行了级联,并 ...

  7. JavaScript中判断对象类型方法大全1

    我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...

  8. 浅析人脸检测之Haar分类器方法

    一.Haar分类器的前世今生 人脸检测属于计算机视觉的范畴,早期人们的主要研究方向是人脸识别,即根据人脸来识别人物的身份,后来在复杂背景下的人脸检测需求越来越大,人脸检测也逐渐作为一个单独的研究方向发 ...

  9. JavaScript中判断对象类型的种种方法

    我们知道,JavaScript中检测对象类型的运算符有:typeof.instanceof,还有对象的constructor属性: 1) typeof 运算符 typeof 是一元运算符,返回结果是一 ...

随机推荐

  1. OO课第三单元总结

    一.梳理JML语言的理论基础 (1)理论基础 JMl的出现很大程度上一为了行为接口的规范化,用这种语言来指定特定模块的特定功能.JML的核心部分分为三个部分:前置条件(requires).后置条件(e ...

  2. elasticsearch基于RBAC认证和集群之间的TLS通讯

    elasticsearch基于RBAC认证和集群之间的TLS通讯 一.背景 二.需要解决的问题 三.给es增加用户名和密码访问 1.修改config/elasticsearch.yml 2.访问es集 ...

  3. redis5集群搭建步骤

    通常情况下为了redis的高可用,我们一般不会使用redis的单实例去运行,一般都会搭建一个 redis 的集群去运行.此处记录一下 redis5 以后 cluster 集群的搭建. 一.需求 red ...

  4. 生产环境部署springcloud微服务启动慢的问题排查

    今天带来一个真实案例,虽然不是什么故障,但是希望对大家有所帮助. 一.问题现象: 生产环境部署springcloud应用,服务部署之后,有时候需要10几分钟才能启动成功,在开发测试环境则没有这个问题. ...

  5. f(sinx)到底是啥

    总结一句:cosx是偶次就一定可以用.

  6. 查找最小生成树:普里姆算法算法(Prim)算法

    一.算法介绍 普里姆算法(Prim's algorithm),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之 ...

  7. DeWeb第1个通用化模块:登录模块,仅需要修改一个配置文件即可实现登录功能

    演示: https://delphibbs.com/login.dw 开发环境和源代码 https://gitee.com/xamh/dewebsdk 效果图: 配置方法: 在Runtime目录中放一 ...

  8. Netfilter和iptables介绍

    前言 在开始Kubernetes的网络之前我们先来学习Netfilter,Netfilter可能了解的人比较少,但是iptables用过 Linux的都应该知道.本文主要介绍Netfilter与ipt ...

  9. 【Jenkins】jenkins构建python项目提示:'python' 不是内部或外部命令,也不是可运行的程序或批处理文件

    一.问题:jenkins构建python项目提示:'python' 不是内部或外部命令,也不是可运行的程序或批处理文件 二.原因:要在jenkins配置本地环境变量 三.解决方案:添加python.e ...

  10. MySQL高级篇 | 分析sql性能

    在应用的的开发过程中,由于初期数据量小,开发人员写 SQL 语句时更重视功能上的实现,但是当应用系统正式上线后,随着生产数据量的急剧增长,很多 SQL 语句开始逐渐显露出性能问题,对生产的影响也越来越 ...