带着问题阅读

1、Synchronized如何使用,加锁的粒度分别是什么

2、Synchronized的实现机制是什么

3、Synchronized是公平锁吗

4、Java对Synchronized做了哪些优化

Synchronized介绍

基本上所有的并发模式在解决线程冲突问题的时候,都是采用序列化访问共享资源的方案。这意味着在给定时刻只允许一个任务访问共享资源。通常这是通过在代码前面加上一条锁语句来实现的,这就使得在一段时间内只有一个任务可以运行这段代码。因为锁语句产生了一种互相排斥的效果,所以这种机制常常称为互斥量(mutex)

为防止资源冲突,Java提供了Synchronized用于解决互斥访问的问题。当任务执行被Synchronized修饰的代码时,将先检查锁是否可用,然后获取锁、执行代码,最后释放锁。考虑屋里有一个卫生间,多个人都需要单独使用,为了使用卫生间,每个人都先敲门,看看能否使用,如果没人使用他就进入卫生间并锁上门,当其它人来的时候就会被挡在门外。

Synchronized使用方式

  • 对象锁

synchronized可以用于修饰具体对象,如示例中分别对synObjthis对象加锁,即synObjthis分别作为共享资源被用于互斥访问,其中thread1thread2同时访问synObj互斥,thread3thread4同时访问this(demo对象)互斥。

public class Demo {
private Object synObj = new Object(); public void synObj() {
// 对synObj对象加锁
synchronized(synObj) {
// 同步代码
}
} public void synThis() {
// 对当前对象加锁
synchronized(this) {
// 同步代码
}
}
} Demo demo = new Demo();
// 假设以下四个线程同时运行
new Thread(demo::synObj).start(); // thread1
new Thread(demo::synObj).start(); // thread2
new Thread(demo::synThis).start(); // thread3
new Thread(demo::synThis).start(); // thread4
  • 普通方法锁

synchronized也可用于修饰方法,修饰方法时锁的对象即this,因此如果类的多个方法上都添加了synchronized,那么这几个方法在同步执行时也是互斥的。

public class Demo {
public synchronized void test1() {};
public synchronized void test2() {};
} Demo demo = new Demo();
// 以下两个线程同步执行时是互斥的,都需要获取demo对象的锁
new Thread(demo::test1).start();
new Thread(demo::test2).start();
  • 静态方法锁

以上两种应用方式由于锁的粒度都是对象,因此只能在并发调用同一个对象的方法是才会互斥,如果创建了Demo demo1 = new Demo()Demo demo2 = new Demo()两个对象并分别调用,就不会产生互斥。如要在多实例之间也达成互斥,则可以通过修饰静态方法来达成。

public class StaticDemo {
private static Object obj = new Object();
public void test() {
synchronized(obj) {
// 同步代码
}
} public static synchronized void testStatic() {};
} // 两个线程互斥s
new Thread(StaticDemo::testStatic).start();
new Thread(StaticDemo::testStatic).start();
  • 类锁

通过添加类锁,也可实现多实例之间的互斥。synchronized修饰在静态方法时,也等价于修饰当前类对象。

public class StaticDemo {
public void test() {
synchronized(StaticDemo.class) {
// 同步代码
}
}
}

Synchronized原理分析

不论synchronized用于修饰哪里,本质还是会修饰到具体的对象(实例对象或类对象)上,synchronized的实现机制也是对对象的加锁。Java中每个对象都隐含关联一个监视器ObjectMonitor,监视器通过cpp实现内置在JVM中,监视器地址记录在对象的MarkWord上,synchronized通过ObjectMonitor实现对象的锁操作。

对象头MarkWord简介

JVM在内存中将对象划为三部分:对象头、实例数据和填充数据。对象头分为MarkWord和类型指针两部分,这里只针对锁相关做进一步介绍。MarkWord用于存储对象自身的运行数据,如哈希值、GC分代年龄等,这部分在32位和64位虚拟机中会分别占用32位和64位空间,以下是32位的空间布局(64位布局相同,分的bit数不同),MarkWord会根据对象状态复用存储空间,例如对象未锁定状态下,采用25bit哈希 + 4bitGC年龄 + 1bit固定0 + 2bit标志存储。当标志位为10表示对象处于重量级锁定时,剩余空间就用于存储ObjectMonitor对象的地址。

ObjectMonitor简介

ObjectMonitor() {
...
_count = 0; // 记录个数
_owner = NULL; // 记录持有线程
_cxq = NULL; // 记录锁阻塞线程,与EntryList配合
_WaitSet = NULL; // 记录处于wait状态的线程
_EntryList = NULL; // 记录处于锁阻塞状态的线程
...
}

ObjectMonitor整体内容略去,核心关注以上字段。_owner用于记录持有线程,_count用于记录重入次数,_cxq_EntryList配合用于记录获取锁失败阻塞后的线程。

线程获取锁失败后会首先被挂载到_cxq队列上并调用park阻塞。当锁被释放时,如_EntryList不为空,则尝试唤醒_EntryList队首元素;如_EntryList为空,默认从_cxq摘取队首元素放入_EntryList并试图获取锁。由于monitor锁机制为非公平锁,因此可能唤醒失败,两个队列都会保存阻塞元素。

详细解析可见参考第二篇文章

Synchronized重量级锁原理

public class Demo {
private Object obj = new Object();
public void test() {
synchronized(obj) {
System.out.println("lock");
}
}
}

编译以上代码,javap -v查看字节码。

...
public void test();
Code:
...
monitorenter // 加锁
...
monitorexit // 释放锁
...
return
...

其余内容略去,关键在于monitorentermonitorexit两个指令。

当执行monitorenter时,将会尝试获取该对象monitor的所有权。

  • 如果monitor持有数为0即无线程持有,则直接获取monitor并将进入数+1;
  • 如果monitor已被线程占有,检查是否为当前线程,如是当前线程,则将计数器+1;否则阻塞当前线程。

当执行monitorexit时,将monitor计数器-1,如减后为0,则线程释放monitor

synchronized修饰在方法上,则会在方法上增加ACC_SYNCHRONIZED的标记,原理与上述相同。

JVM对Synchronized的优化

monitorentermonitorexit依赖底层操作系统的mutex lock实现,该指令对线程的挂起和唤醒涉及到用户态到内核态的切换,如果同步代码频繁调用,会带来昂贵的切换开销。自jdk1.6起对锁的实现引入了大量优化,下面来介绍一下都做了哪些优化。

锁消除

锁消除是指虚拟机即时编译器在运行时,对一些代码要求同步,但是对被检测到不可能存在共享数据竞争的锁进行消除。锁消除的主要判定一句来源于逃逸分析的数据支持,如果判断一段代码中,在堆上的所有数据都不会逃逸出去被其他线程访问到,那就可以把它们当作栈上数据对待,认为是线程私有的,同步加锁无须进行。

public String copyString(String s) {
StringBuffer sb = new StringBuffer();
sb.append(s);
return sb.toString();
}

如示例代码,StringBuffer.append是通过sychronized修饰的线程安全操作,但在该代码块中,sb对象是局部变量,仅会被当前线程访问,不存在线程竞争,因此锁经过编译器检测后可以消除。

锁粗化

原则上编写同步代码时,推荐将同步块的作用范围限制的尽量小,一方面减少同步代码块的执行时间,一方面减少同步竞争次数,以便存在竞争时,等待锁的线程可以尽快获得锁。但是如果一系列连续操作都在对同一对象反复加锁和释放锁,那即使没有线程竞争也会产生很多没必要的开销。

private Object obj = new Object();

public void lock() {
synchronized(obj) {
...
}
// 再次加锁
synchronized(obj) {
...
}
}

如上代码,连续两次对同一对象进行同步,即可将锁粗化合并为一个锁。

锁消除和锁粗化都是依赖JIT即时编译实现,因此通过javac查看编译后的字节码,仍然保留着原始的锁指令。

自旋锁和自适应自旋

前文中我们提到,互斥同步涉及的挂起/唤醒线程都涉及内核态转换,如果频繁产生竞争会带来很大的压力。虚拟机开发团队注意到很多应用对锁的持有只会持续很短的时间,如果可以让竞争锁的线程稍等一下,不放弃处理器,就可以在持有锁的线程执行完毕后获取锁,避免产生空间切换,这就是自旋

自旋锁在jdk1.4.2中就引入,需要-XX: +UseSpining开启,在jdk6以后就默认开启了。自旋虽然避免了空间切换问题,但如果某个锁竞争很激烈或者锁的持有时间很长,那自旋只能白白占用处理器资源,因此在jdk1.6中引入了自适应自旋。自适应意味着自旋的时间不再固定,如果对一个锁对象自旋等待刚刚成功过,则允许后续自旋等待较长时间;如果自旋很少成功,那就在后续获得锁的过程中直接跳过自旋。

偏向锁

偏向锁也是jdk1.6引入的优化,目的是消除数据在无竞争情况下的同步原语。锁被第一个线程获取后,在接下来的执行过程中,如果一直没有被其他线程获取,则持有偏向锁的线程不在需要同步。

偏向锁加锁流程如下:

  • 检查当前是否为偏向状态。
  • 如果是,检查当前线程ID与Mark Word记录的线程ID是否一致,如一致则进入同步代码,不一致则释放偏向锁
  • 如不是偏向锁,则使用CAS尝试修改线程ID,如修改成功则进入同步代码,失败则释放偏向锁

线程获取偏向锁后,持有锁的线程以后每次进入相应同步块时,都不需要再进行任何同步操作。

偏向锁不会主动释放,只有当其他线程尝试获取锁时,才会检查持有线程是否可以释放锁。如可以释放则替换为新线程ID,不可释放则升级为轻量级锁。

勘误:图中如判断对象头Mark Word记录非当前线程ID,下一步应当为开始偏向锁撤销而非CAS替换。如有不同意见欢迎留言

轻量级锁

轻量级锁在MarkWord标志位中由00表示,轻量级锁首先在当前线程栈帧当中建立一个锁记录Lock Record,用于存储MarkWord的拷贝;然后虚拟机使用CAS操作将Lock Record的地址记录到MarkWord当中,并将标志位改为00,表示对象处于轻量级锁定状态。如果更新失败,则会进入自旋并在自旋达到一定次数后升级为重量级锁。自旋的同时如果有第三个线程尝试获取锁,也会直接升级到重量级锁。

同步代码执行完毕后,轻量级锁同样使用CAS操作将栈帧中的MarkWord拷贝回到对象中,如果操作成功,则释放锁;如果替换失败,则说明有其他线程在竞争锁(意味着升级为重量级锁),则当前膨胀为重量锁转换为重量锁的释放。

重量级锁

重量级锁即上文Synchronized重量级锁原理所述内容,综上synchronized的加锁过程为偏向锁 -> 轻量级锁 -> 重量级锁,这个过程也称为锁膨胀

图源自网络

总结

最后总结对比一下几种锁实现。

锁类型 运行空间 实现机制 适用范围
偏向锁 用户态 初次CAS加锁,后续如无竞争可直接进入 单线程执行
轻量级锁 用户态 CAS+自旋加锁 锁竞争不激烈
重量级锁 内核态 mutex 内核态操作 锁激烈竞争

参考

Java并发之Synchronized机制详解的更多相关文章

  1. 【转】java的动态代理机制详解

    java的动态代理机制详解   在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一个就是AOP,对于IoC,依赖注入就不用多说了,而对于Spring的核心AOP来说,我们 ...

  2. java的动态代理机制详解-----https://www.cnblogs.com/xiaoluo501395377/p/3383130.html

    java的动态代理机制详解-----https://www.cnblogs.com/xiaoluo501395377/p/3383130.html

  3. java 深拷贝与浅拷贝机制详解

    概要: 在Java中,拷贝分为深拷贝和浅拷贝两种.java在公共超类Object中实现了一种叫做clone的方法,这种方法clone出来的新对象为浅拷贝,而通过自己定义的clone方法为深拷贝. (一 ...

  4. JAVA中的GC机制详解

    优秀Java程序员必须了解的GC工作原理 一个优秀的Java程序员必须了解GC的工作原理.如何优化GC的性能.如何与GC进行有限的交互,因为有一些应用程序对性能要求较高,例如嵌入式系统.实时系统等,只 ...

  5. java的动态代理机制详解

    在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一个就是AOP,对于IoC,依赖注入就不用多说了,而对于Spring的核心AOP来说,我们不但要知道怎么通过AOP来满足的 ...

  6. Java的动态代理机制详解(转)

    在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一个就是AOP,对于IoC,依赖注入就不用多说了,而对于Spring的核心AOP来说,我们不但要知道怎么通过AOP来满足的 ...

  7. (转)java的动态代理机制详解

    原文出自:http://www.cnblogs.com/xiaoluo501395377/p/3383130.html 在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一 ...

  8. [转载] java的动态代理机制详解

    转载自http://www.cnblogs.com/xiaoluo501395377/p/3383130.html 代理模式 代理模式是常用的java设计模式,他的特征是代理类与委托类有同样的接口,代 ...

  9. Java虚拟机:类加载机制详解

    版权声明:本文为博主原创文章,转载请注明出处,欢迎交流学习! 大家知道,我们的Java程序被编译器编译成class文件,在class文件中描述的各种信息,最终都需要加载到虚拟机内存才能运行和使用,那么 ...

随机推荐

  1. Activiti7 结束/终止流程

    1.  结束/终止 正在运行的流程实例 思路:跟回退一样的思路一样,直接从当前节点跳到结束节点(EndEvent) /** * 结束任务 * @param taskId 当前任务ID */ publi ...

  2. Mysql读写锁保姆级图文教程

    摘要:读锁会阻塞写,但是不会阻塞读,而写锁会把杜希俄都阻塞. 本文分享自华为云社区<Mysql保姆级读写锁图文教程丨[绽放吧!数据库]>,作者:Code皮皮虾 . 准备 创建mylock表 ...

  3. SQL语句(一)基础查询与过滤数据

    目录 一.数据库测试表 二.基础查询 1. 获得需要的记录的特定字段 2. 查询常量值 3. 查询表达式 4. 查询函数 5. 起别名 6. 去重 7. CONCAT函数的简单使用 三.过滤数据 大纲 ...

  4. 教你如何使用FusionInsight SqoopShell

    摘要:Sqoop-shell是一个Loader的shell工具,其所有功能都是通过执行脚本"sqoop2-shell"来实现的. 本文分享自华为云社区<FusionInsig ...

  5. 用 getchar putchar 来输入和接收 但是要清空缓冲区

    1 //用 getchar putchar 来输入和接收 但是要清空缓冲区 2 3 #include <stdio.h> 4 int main() 5 { 6 char ch1,ch2; ...

  6. CSS Flex布局完全指南 #flight.Archives002

    Title/CSS Flex布局完全指南 #flight.Archives002 序(from Ruanyf) : 网页布局(layout)是 CSS 的一个重点应用. 布局的传统解决方案,基于盒状模 ...

  7. Docker部署Zookeeper部署实践(1)

    Zookeeper可提供的服务主要有:配置服务.名字服务.分布式同步.组服务等 1. 抓取Zookeeper镜像 命令:docker pull zookeeper 2. 将Zookeeper镜像保存为 ...

  8. 【笔记】KNN之分类准确度

    分类准确度 分类准确度 以sklearn中的手写数字datasets.load_digits为例,其是8*8的图形,具有64个特征值,类别由0到9 我们挑选出666这个图形,将其可视化 X = dig ...

  9. AWD比赛组织指南

    目录 题目构建 平台构建 后端部署流程 前端展示 批量启动 check 题目构建 赛题全部使用docker部署,需准备check脚本和镜像 镜像构建注意事项 1.注意web目录权限 2.注意服务是否自 ...

  10. P5038 奇怪的游戏

    题目询问了一个不能确定的时间,所以显然做法中要包含一个二分答案. 我们将整张图分为黑白点两种,黑点旁边的点就是白点,白点旁边的点就是黑点,想一下就能知道,每次操作会使黑白点的数字各加一,而我们的目的就 ...