做过,但当时咕了 T3

Merchant

先特判 \(t=0\),之后斜率一定会起作用。

考虑最终选择的物品集合,它们的斜率和一定大于 \(0\),因此答案具有单调性,可以二分。

实现的时候注意细节

const int N = 1e6+5;
int n,m;
LL s,k[N],b[N]; LL y[N]; bool check(int x) {
For(i,1,n) y[i] = k[i] * x + b[i];
nth_element(y+1,y+m,y+n+1,greater<LL>()); // O(n)找前m大
LL sum = 0;
For(i,1,m) {
if( y[i] >= 0 ) sum += y[i]; // 可能选不满m个
if( sum >= s ) return 1; // 如果不在这里判会爆LL
}
return 0;
} signed main() {
freopen("merchant.in","r",stdin);
freopen("merchant.out","w",stdout);
read(n,m,s);
For(i,1,n) read(k[i],b[i]);
if( check(0) ) { puts("0"); return 0; }
int l = 1, r = 1e9;
while( l < r ) {
int mid = l+r>>1;
if( check(mid) ) r = mid;
else l = mid+1;
}
write(l);
return iocl();
}

Equation

乍一看不好做,但题目只求 \(x_1\) 的值,可以把每个方程改写成 \(x_i=k_ix_1+b_i\) 的形式,修改时用 BIT 维护 \(b\) 即可。注意分深度的奇偶来判断正负。

const int N = 1e6+5;
int n,q,fa[N],val[N]; int ind,dfn[N],siz[N],k[N];
vector<int> to[N]; struct BIT {
LL t[N];
void add(int i,LL x) { for(;i<=n;i+=i&-i)t[i]+=x; }
void add(int l,int r,LL x) { add(l,x), add(r+1,-x); }
LL operator [] (int i) { LL res=0; for(;i;i-=i&-i)res+=t[i]; return res; }
} b; void none() { putchar('n'),putchar('o'),putchar('n'),putchar('e'),putchar(10); }
void inf() { putchar('i'),putchar('n'),putchar('f'),putchar(10); } void dfs(int u) {
dfn[u] = ++ind, siz[u] = 1;
for(int v : to[u]) k[v] = -k[u], dfs(v), siz[u] += siz[v];
b.add(dfn[u],dfn[u]+siz[u]-1,k[u]*val[u]);
} signed main() {
freopen("equation.in","r",stdin);
freopen("equation.out","w",stdout);
read(n,q);
For(i,2,n) {
read(fa[i]), read(val[i]);
to[fa[i]].pb(i);
}
k[1] = 1, dfs(1);
while( q-- ) {
int op; read(op);
if( op == 1 ) {
int u,v,s; read(u,v,s);
int kk = k[u]+k[v]; LL bb = s-k[u]*b[dfn[u]]-k[v]*b[dfn[v]];
if( !kk ) !bb ? inf() : none();
else if( bb % kk ) none();
else !bb ? none() : write(bb/kk);
} else {
int u,w; read(u,w);
b.add(dfn[u],dfn[u]+siz[u]-1,k[u]*(w-val[u])), val[u] = w;
}
}
return iocl();
}

rectangle

发现 \(n\) 很大而值域很小,考虑直接在值域上找矩形。

枚举列来确定矩形左右边界,根据左右边界上的点的纵坐标来确定合法的上下边界。

具体做法

时间复杂度 \(O(2500n\log2500)\)

const int N = 1e4+5, X = 2500, mod = 1e9+7;
int n,cnt[N],mp[X+5][X+5]; bool vis[X+5][X+5];
int ans; struct BIT {
int t[X+5];
void add(int i,int x) { for(;i<=X;i+=i&-i)t[i]+=x; }
int query(int l,int r) {
int res=0; for(--l;r>l;r-=r&-r)res+=t[r];
for(;l>r;l-=l&-l)res-=t[l]; return res; }
} siz[X+5],sum[X+5]; signed main() {
freopen("rectangle.in","r",stdin);
freopen("rectangle.out","w",stdout);
read(n);
For(i,1,n) {
int x; read(x);
read(mp[x][++cnt[x]]);
}
For(i,1,X) {
sort(mp[i]+1,mp[i]+cnt[i]+1);
mp[i][cnt[i]+1] = X+1;
}
For(r,1,X) if( cnt[r] ) {
For(i,1,cnt[r]) if( !vis[r][mp[r][i]] ) vis[r][mp[r][i]] = 1,
siz[r].add(mp[r][i],1), sum[r].add(mp[r][i],mp[r][i]);
rFor(l,r-1,1) if( cnt[l] ) {
For(i,1,cnt[l]) if( !vis[r][mp[l][i]] ) vis[r][mp[l][i]] = 1,
siz[r].add(mp[l][i],1), sum[r].add(mp[l][i],mp[l][i]);
int i = 1, j = 1, now = max(mp[l][1],mp[r][1]);
while( mp[l][i+1] <= now ) ++i;
while( mp[r][j+1] <= now ) ++j;
while( i <= cnt[l] && j <= cnt[r] ) {
int up = min(mp[l][i+1],mp[r][j+1]), down = min(mp[l][i],mp[r][j]);
ans += (r-l) *
(((LL)sum[r].query(now,up-1) * siz[r].query(1,down) -
(LL)siz[r].query(now,up-1) * sum[r].query(1,down)) %mod) %mod;
if( ans >= mod ) ans -= mod;
now = up;
if( mp[l][i+1] <= now ) ++i;
if( mp[r][j+1] <= now ) ++j;
}
}
}
write(ans);
return iocl();
}

20210809 Merchant,Equation,Rectangle的更多相关文章

  1. csp-s模拟测试56Merchant, Equation,Rectangle题解

    题面:https://www.cnblogs.com/Juve/articles/11619002.html merchant: 二分答案,贪心选前m大的 但是用sort复杂度不优,会T掉 我们只是找 ...

  2. csp-s模拟测试56(10.2)Merchant「二分」·Equation「树状数组」

    又死了......T1 Merchant 因为每个集合都可以写成一次函数的形式,所以假设是单调升的函数,那么随着t越大就越佳 而单调减的函数,随着t的增大结果越小,所以不是单调的??? 但是我们的单调 ...

  3. 2D Rotated Rectangle Collision

    Introduction While working on a project for school, I found it necessary to perform a collision chec ...

  4. [LeetCode] Perfect Rectangle 完美矩形

    Given N axis-aligned rectangles where N > 0, determine if they all together form an exact cover o ...

  5. [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K

    Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...

  6. [LeetCode] Smallest Rectangle Enclosing Black Pixels 包含黑像素的最小矩阵

    An image is represented by a binary matrix with 0 as a white pixel and 1 as a black pixel. The black ...

  7. [LeetCode] Rectangle Area 矩形面积

    Find the total area covered by two rectilinear rectangles in a2D plane. Each rectangle is defined by ...

  8. [LeetCode] Maximal Rectangle 最大矩形

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  9. [LeetCode] Largest Rectangle in Histogram 直方图中最大的矩形

    Given n non-negative integers representing the histogram's bar height where the width of each bar is ...

随机推荐

  1. linux ifconfig不可用

    Q: A: 源出问题,修改源:进入源:源地址 /etc/apt/ sudo vi sources.list,将下列内容替换sources.list中的内容,并保存 deb http://mirrors ...

  2. jquery : 菜单根据url变颜色

    //菜单根据url变颜色$(document).ready(function(){ $('#nav li a').each(function(){ if($($(this))[0].href==Str ...

  3. thinkphp5 原生sql带分页方法

    1.先在顶部引入use think\paginator\driver\Page; 2.使用下例代码 $pageNumber = input('page')? input('page'):'0';//客 ...

  4. CentOS 7 安装虚拟机

    1.本次安装centos7 安装使用的软件是VitrualBox 虚拟机软件 Oracle公司的虚拟机软件,免费商品(大家可以百度搜索去官网下载) 1:我这里使用的是阿里的centos7的镜像(大家可 ...

  5. WPF Combox实现下拉多选,可选中多个值

    自定义多选MultiCombox,可以实现下拉列表多选 using System; using System.Collections.Generic; using System.Collections ...

  6. Android开发没有一技之长就废了吗?

    写在前面的话 不知你发现没有,人到中年之后,时间流逝的速度仿佛越来越快? 还记得毕业那会儿,我们怀着新鲜和好奇踏进了职场,那个时候每天都是满满的挑战和需要学习的东西,感觉时间过得真慢啊: 不知道从什么 ...

  7. Convert a Private Project on bitbucket.com to a github Public Project

    Create a public repo on github, you can add README or License files on the master branch, suppose th ...

  8. 不懂Ribbon原理的可以进来看看哦,分析RibbonClientConfiguration完成了哪些核心初始操作

      本文在前一篇文章的基础上来继续分析Ribbon的核心内容. 不懂Ribbon原理的可以进来看看哦,分析SpringBoot自动装配完成了Ribbon哪些核心操作 RibbonClientConfi ...

  9. Java GC【笔记】

    Java GC(垃圾回收机制) (PS:篇幅很长的,样式都会重新整一下,比如使用二级) 首先我们得知道,一个对象被判定为垃圾的标准是什么? 对于Java对象来说,当不被其他的对象引用的时候,就可以看作 ...

  10. 【Vulnhub】 DC-4 靶机

    Vulnhub DC-4 一.环境搭建 下载链接:https://www.vulnhub.com/entry/dc-4,313/ 解压后用VMware打开,导入虚拟机 网卡配置看个人习惯,我喜欢NAT ...