转自:http://annegu.iteye.com/blog/539465

Hashmap是一种非常常用的、应用广泛的数据类型,最近研究到相关的内容,就正好复习一下。网上关于hashmap的文章很多,但到底是自己学习的总结,就发出来跟大家一起分享,一起讨论。

1、hashmap的数据结构 
要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个是模拟指针(引用),所有的数据结构都可以用这两个基本结构来构造的,hashmap也不例外。Hashmap实际上是一个数组和链表的结合体(在数据结构中,一般称之为“链表散列“),请看下图(横排表示数组,纵排表示数组元素【实际上是一个链表】)。

从图中我们可以看到一个hashmap就是一个数组结构,当新建一个hashmap的时候,就会初始化一个数组。我们来看看java代码:

  1. /**
  2. * The table, resized as necessary. Length MUST Always be a power of two.
  3. *  FIXME 这里需要注意这句话,至于原因后面会讲到
  4. */
  5. transient Entry[] table;
  1. static class Entry<K,V> implements Map.Entry<K,V> {
  2. final K key;
  3. V value;
  4. final int hash;
  5. Entry<K,V> next;
  6. ..........
  7. }

上面的Entry就是数组中的元素,它持有一个指向下一个元素的引用,这就构成了链表。 
         当我们往hashmap中put元素的时候,先根据key的hash值得到这个元素在数组中的位置(即下标),然后就可以把这个元素放到对应的位置中了。如果这个元素所在的位子上已经存放有其他元素了,那么在同一个位子上的元素将以链表的形式存放,新加入的放在链头,最先加入的放在链尾。从hashmap中get元素时,首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。从这里我们可以想象得到,如果每个位置上的链表只有一个元素,那么hashmap的get效率将是最高的,但是理想总是美好的,现实总是有困难需要我们去克服,哈哈~

2、hash算法 
我们可以看到在hashmap中要找到某个元素,需要根据key的hash值来求得对应数组中的位置。如何计算这个位置就是hash算法。前面说过hashmap的数据结构是数组和链表的结合,所以我们当然希望这个hashmap里面的元素位置尽量的分布均匀些,尽量使得每个位置上的元素数量只有一个,那么当我们用hash算法求得这个位置的时候,马上就可以知道对应位置的元素就是我们要的,而不用再去遍历链表。

所以我们首先想到的就是把hashcode对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大的,能不能找一种更快速,消耗更小的方式那?java中时这样做的,

  1. static int indexFor(int h, int length) {
  2. return h & (length-1);
  3. }

首先算得key得hashcode值,然后跟数组的长度-1做一次“与”运算(&)。看上去很简单,其实比较有玄机。比如数组的长度是2的4次方,那么hashcode就会和2的4次方-1做“与”运算。很多人都有这个疑问,为什么hashmap的数组初始化大小都是2的次方大小时,hashmap的效率最高,我以2的4次方举例,来解释一下为什么数组大小为2的幂时hashmap访问的性能最高。

看下图,左边两组是数组长度为16(2的4次方),右边两组是数组长度为15。两组的hashcode均为8和9,但是很明显,当它们和1110“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到同一个链表上,那么查询的时候就需要遍历这个链表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hashcode的值会与14(1110)进行“与”,那么最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!

所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。 
          说到这里,我们再回头看一下hashmap中默认的数组大小是多少,查看源代码可以得知是16,为什么是16,而不是15,也不是20呢,看到上面annegu的解释之后我们就清楚了吧,显然是因为16是2的整数次幂的原因,在小数据量的情况下16比15和20更能减少key之间的碰撞,而加快查询的效率。

所以,在存储大容量数据的时候,最好预先指定hashmap的size为2的整数次幂次方。就算不指定的话,也会以大于且最接近指定值大小的2次幂来初始化的,代码如下(HashMap的构造方法中):

  1. // Find a power of 2 >= initialCapacity
  2. int capacity = 1;
  3. while (capacity < initialCapacity)
  4. capacity <<= 1;

3、hashmap的resize

当hashmap中的元素越来越多的时候,碰撞的几率也就越来越高(因为数组的长度是固定的),所以为了提高查询的效率,就要对hashmap的数组进行扩容,数组扩容这个操作也会出现在ArrayList中,所以这是一个通用的操作,很多人对它的性能表示过怀疑,不过想想我们的“均摊”原理,就释然了,而在hashmap数组扩容之后,最消耗性能的点就出现了:原数组中的数据必须重新计算其在新数组中的位置,并放进去,这就是resize。

那么hashmap什么时候进行扩容呢?当hashmap中的元素个数超过数组大小*loadFactor时,就会进行数组扩容,loadFactor的默认值为0.75,也就是说,默认情况下,数组大小为16,那么当hashmap中元素个数超过16*0.75=12的时候,就把数组的大小扩展为2*16=32,即扩大一倍,然后重新计算每个元素在数组中的位置,而这是一个非常消耗性能的操作,所以如果我们已经预知hashmap中元素的个数,那么预设元素的个数能够有效的提高hashmap的性能。比如说,我们有1000个元素new HashMap(1000), 但是理论上来讲new HashMap(1024)更合适,不过上面annegu已经说过,即使是1000,hashmap也自动会将其设置为1024。 但是new HashMap(1024)还不是更合适的,因为0.75*1000 < 1000, 也就是说为了让0.75 * size > 1000, 我们必须这样new HashMap(2048)才最合适,既考虑了&的问题,也避免了resize的问题。

4、key的hashcode与equals方法改写 
在第一部分hashmap的数据结构中,annegu就写了get方法的过程:首先计算key的hashcode,找到数组中对应位置的某一元素,然后通过key的equals方法在对应位置的链表中找到需要的元素。所以,hashcode与equals方法对于找到对应元素是两个关键方法。

Hashmap的key可以是任何类型的对象,例如User这种对象,为了保证两个具有相同属性的user的hashcode相同,我们就需要改写hashcode方法,比方把hashcode值的计算与User对象的id关联起来,那么只要user对象拥有相同id,那么他们的hashcode也能保持一致了,这样就可以找到在hashmap数组中的位置了。如果这个位置上有多个元素,还需要用key的equals方法在对应位置的链表中找到需要的元素,所以只改写了hashcode方法是不够的,equals方法也是需要改写滴~当然啦,按正常思维逻辑,equals方法一般都会根据实际的业务内容来定义,例如根据user对象的id来判断两个user是否相等。 
在改写equals方法的时候,需要满足以下三点: 
(1) 自反性:就是说a.equals(a)必须为true。 
(2) 对称性:就是说a.equals(b)=true的话,b.equals(a)也必须为true。 
(3) 传递性:就是说a.equals(b)=true,并且b.equals(c)=true的话,a.equals(c)也必须为true。 
通过改写key对象的equals和hashcode方法,我们可以将任意的业务对象作为map的key(前提是你确实有这样的需要)。

总结: 
        本文主要描述了HashMap的结构,和hashmap中hash函数的实现,以及该实现的特性,同时描述了hashmap中resize带来性能消耗的根本原因,以及将普通的域模型对象作为key的基本要求。尤其是hash函数的实现,可以说是整个HashMap的精髓所在,只有真正理解了这个hash函数,才可以说对HashMap有了一定的理解。

这是hashmap第一篇,主要讲了一下hashmap的数据结构和计算hash的算法。接下去annegu还会写第二篇,主要讲讲LinkedHashMap和LRUHashMap。先做个预告,呵呵~

深入理解HashMap的更多相关文章

  1. 深入理解HashMap+ConcurrentHashMap的扩容策略

    前言 理解HashMap和ConcurrentHashMap的重点在于: (1)理解HashMap的数据结构的设计和实现思路 (2)在(1)的基础上,理解ConcurrentHashMap的并发安全的 ...

  2. Map 综述(一):彻头彻尾理解 HashMap

    转载自:https://blog.csdn.net/justloveyou_/article/details/62893086 摘要: HashMap是Map族中最为常用的一种,也是 Java Col ...

  3. 深入理解HashMap的扩容机制

    什么时候扩容: 网上总结的会有很多,但大多都总结的不够完整或者不够准确.大多数可能值说了满足我下面条件一的情况. 扩容必须满足两个条件: 1. 存放新值的时候当前已有元素的个数必须大于等于阈值 2. ...

  4. 集合之深入理解HashMap

    Hashmap是一种非常常用的.应用广泛的数据类型 1.hashmap的数据结构 要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个 ...

  5. 深入理解HashMap上篇

    前言: HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型.随着JDK(Java Developmet Kit)版本的更新,JDK1.8对HashMap底层的实现进行了优化, ...

  6. 通过源码理解HashMap的并发问题

    最近在学习有关于Java的基础知识,在学习到HashMap的相关知识的时候,了解了HashMap的并发中会出现的问题,在此记录,加深理解(这篇文章是基于Java1.7的,主要是为了更加直观,更新版本的 ...

  7. 深入理解HashMap和CurrentHashMap

    原文链接:https://segmentfault.com/a/1190000015726870 前言 Map 这样的 Key Value 在软件开发中是非常经典的结构,常用于在内存中存放数据. 本篇 ...

  8. 理解HashMap的原理

    HashMap内部数据结构        HashMap内部采用数组和链表结合的方式来存取数据(见下图).这种方式有什么好处呢? 我们知道,数组操作对于检索是O(1)的,能够很快的根据数组的下标定位对 ...

  9. 深入理解HashMap(原理,查找,扩容)

    面试的时候闻到了Hashmap的扩容机制,之前只看到了Hasmap的实现机制,补一下基础知识,讲的非常好 原文链接: http://www.iteye.com/topic/539465 Hashmap ...

随机推荐

  1. 【OpenGL】法线变换详解(Normal Transform)[转]

    http://blog.csdn.net/xiajun07061225/article/details/7762711 在图形学中,同样的一个模型视图变换矩阵可以用来变换点.线.多边形以及其它几何体, ...

  2. Magento路径函数getBaseUrl使用方法

    当我们在设计开发Magento主题模板时候,有个函数一定要知道,那就是getBaseUrl函数,用getBaseUrl函数我们可以在.phtml里调用JS.image.File.   1,getBas ...

  3. Jquery autocomplete插件的使用

    简单用法: <%@ page language="java" contentType="text/html; charset=UTF-8" pageEnc ...

  4. 转:label标签的特殊用法

    容易被忽略的label标签 原始作用 label标签是HTML原生的标签,其原始的作用参考这里 label 标签为 input 元素定义标注(标记). label 元素不会向用户呈现任何特殊效果.不过 ...

  5. SQL中使用WITH AS提高性能-使用公用表表达式(CTE)简化嵌套SQL

    转:http://wudataoge.blog.163.com/blog/static/80073886200961652022389/ 一.WITH AS的含义     WITH AS短语,也叫做子 ...

  6. rnn lstm

    资料收集:https://github.com/kjw0612/awesome-rnn 代码+例子+物理意义:https://iamtrask.github.io/2015/11/15/anyone- ...

  7. 删除要被替换的元素的所有事件处理 程序和 JavaScript 对象属性

    使用本节介绍的方法替换子节点可能会导致浏览器的内存占用问题,尤其是在 IE 中,问题更加明显.在删除带有事件处理程序或引用了其他 JavaScript 对象子树时,就有可能导致内存占用问题.假设 某个 ...

  8. 用vs2008打开vs2012项目

    1 使用记事本打开*.sln解决方案文件,将Visual Studio 2012改为Visual Studio 2008 将版本号改为9.00 2 打开扩展名为*.csproj的项目文件,修改为 To ...

  9. Binary Tree Traversal

    1.Preorder Traversal Given a binary tree, return the preorder traversal of its nodes' values. For ex ...

  10. POJ 2253 Frogger

    题目链接:http://poj.org/problem?id=2253 Frogger Time Limit: 1000MS   Memory Limit: 65536K Total Submissi ...