Spark on Yarn遇到的几个问题
1 概述
Spark的on Yarn模式,其资源分配是交给Yarn的ResourceManager来进行管理的,但是目前的Spark版本,Application日志的查看,只能通过Yarn的yarn logs命令实现。
在部署和运行Spark Application的过程中,如果不注意一些小的细节,也许会导致一些问题的出现。
2 防火墙
部署好Spark的包和配置文件,on yarn的两种模式都无法运行,在NodeManager端的日志都是说Connection Refused,连接不上Driver所在的客户端节点,但是客户端的80端口可以正常访问!同时,在日志中有类似信息出现:
Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient memory
内存肯定是够的,但就是无法获取资源!检查防火墙,果然客户端只开启的对80端口的访问,其他都禁止了!如果你的程序在运行的时候也有类似连接被拒绝的情况,最好也是先检查下防火墙的配置!
3 Spark Driver程序host的指定
部署完Spark后,分别使用yarn-cluster模式和yarn-client模式运行Spark自带的计算pi的示例。
Spark的一些配置文件除了一些基本属性外,均未做配置,结果运行的时候两种运行模式出现了不同的状况。yarn-cluster模式可以正常运行,yarn-client模式总是运行失败。查看ResourceManager、NodeManager端的日志,发现程序总是找不到ApplicationMaster,这就奇怪了!并且,客户端的Driver程序开启的端口,在NodeManager端访问被拒绝!非Spark的其他MR任务,能够正常执行。
检查客户端配置文件,发现原来在客户端的/etc/hosts文件中,客户端的一个IP对应了多个Host,Driver程序会默认去取最后对应的那个Host,比如是hostB,但是在NodeManager端是配置的其他Host,hostA,所以导致程序无法访问。为了不影响其他的程序使用客户端的Host列表,这里在Spark配置文件spark-defaults.conf中使用属性spark.driver.host来指定yarn-client模式运行中和Yarn通信的DriverHost,此时yarn-client模式可以正常运行。
上面配置完了之后,发现yarn-cluster模式又不能运行了!想想原因,肯定是上面那个配置参数搞的鬼,注释掉之后,yarn-cluster模式可以继续运行。原因是,yarn-cluster模式下,spark的入口函数是在客户端运行,但是Driver的其他功能是在ApplicationMaster中运行的,上面的那个配置相当于指定了ApplicationMaster的地址,实际上的ApplicationMaster在yarn-master模式下是由ResourceManager随机指定的。
4 on Yarn日志的查看
测试环境下,通过yarn logs -applicationId xxx可以查看运行结束的Application的日志,但是搞到另一个环境下发现使用上述命令查看日志时,总是提示如下信息:
Logs not available at /tmp/nm/remote/logs/hadoop/logs/application_xxx_xxx
Log aggregation has not completed or is not enabled.
去对应的NodeManger目录下,确实找不到日志文件。但是/tmp/nm/remote/logs却是在yarn-site.xml中指定了的目录,这个是对的,到底什么原因呢?难道是Yarn的日志聚集没有起作用?
去NodeManager上查看对应Application的日志:
-- ::, INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.logaggregation.AppLogAggregatorImpl: Starting aggregate log-file for app application_xxx_xxx at /tmp/nm/remote/logs/spark/logs/application_xxx_xxx/hostB.tmp -- ::, INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.logaggregation.AppLogAggregatorImpl: Uploading logs for container container_xxx_xxx_01_000007. Current good log dirs are /data/nm/log -- ::, INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.logaggregation.AppLogAggregatorImpl: Uploading logs for container container_xxx_xxx_000001. Current good log dirs are /data/nm/log -- ::, INFO org.apache.hadoop.yarn.server.nodemanager.DefaultContainerExecutor: Deleting path : /data/nm/log/application_xxx_xxx -- ::, INFO org.apache.hadoop.yarn.server.nodemanager.containermanager.logaggregation.AppLogAggregatorImpl: Finished aggregate log-file for app application_xxx_xxx
可见,日志聚集确实起作用了,但是为什么通过命令不能查看!猛然见看到日志中“/tmp/nm/remote/logs/spark/logs/ application_xxx_xxx/hostB.tmp”,日志的路径有问题,在使用yarn logs命令查看的时候,用的是hadoop用户,实际Spark Application的提交执行用的是spark用户,而yarn logs命令默认去找的是当前用户的路径,这就是查看不到日志的原因。切换到spark用户再查看,日志终于出来了!
5 LZO相关问题
如果在Spark中使用了LZO作为EventLog的的压缩算法等,就得实现安装好LZO这个东东,否则会出现类似于如下的异常:
Caused by: java.lang.IllegalArgumentException: Compression codec com.hadoop.compression.lzo.LzoCodec not found. at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:134) at org.apache.hadoop.io.compress.CompressionCodecFactory.<init>(CompressionCodecFactory.java:174) at org.apache.hadoop.mapred.TextInputFormat.configure(TextInputFormat.java:45) ... 66 more Caused by: java.lang.ClassNotFoundException: Class com.hadoop.compression.lzo.LzoCodec not found at org.apache.hadoop.conf.Configuration.getClassByName(Configuration.java:1680) at org.apache.hadoop.io.compress.CompressionCodecFactory.getCodecClasses(CompressionCodecFactory.java:127) ... 68 more
或者
[ERROR] [2014-08-05 10:34:41 933] com.hadoop.compression.lzo.GPLNativeCodeLoader [main] (GPLNativeCodeLoader.java:36) Could not load native gpl library java.lang.UnsatisfiedLinkError: no gplcompression in java.library.path
解决办法就是得安装好LZO,并且在HDFS、SPARK中配置好相关的包、文件等,具体步骤见:
http://find.searchhub.org/document/a128707a98fe4ec6
https://github.com/twitter/hadoop-lzo/blob/master/README.md
http://hsiamin.com/posts/2014/05/03/enable-lzo-compression-on-hadoop-pig-and-spark/
6 Spark Hive无法访问Mysql的问题
生产环境下,节点之间肯定是有防火墙限制的,而且Hive的元数据库Mysql,更是对请求的IP和用户等限制的严格,如果在Spark集群中使用yarn-cluster模式进行提交Spark的Application,其运行时Driver是和ApplicationMaster运行在一起,由Yarn的ResourceManager负责分配到集群中的某个NodeManager节点上,如果在Hive-site.xml中只配置了Mysql数据库而没有配置MetaStore的话,也许会遇到连接元数据库失败的问题,此时,就得看下Hive-site.xml的配置,是否Mysql的相关权限配置正确、MetaStore服务是否可以正常连接。
7 内存溢出问题
在Spark中使用hql方法执行hive语句时,由于其在查询过程中调用的是Hive的获取元数据信息、SQL解析,并且使用Cglib等进行序列化反序列化,中间可能产生较多的class文件,导致JVM中的持久代使用较多,如果配置不当,可能引起类似于如下的OOM问题:
Exception in thread "Thread-2" java.lang.OutOfMemoryError: PermGen space
原因是实际使用时,如果用的是JDK1.6版本,Server模式的持久代默认大小是64M,Client模式的持久代默认大小是32M,而Driver端进行SQL处理时,其持久代的使用可能会达到90M,导致OOM溢出,任务失败。
解决方法就是在Spark的conf目录中的spark-defaults.conf里,增加对Driver的JVM配置,因为Driver才负责SQL的解析和元数据获取。配置如下:
spark.driver.extraJavaOptions -XX:PermSize=128M -XX:MaxPermSize=256M
但是,上述情况是在yarn-cluster模式下出现,yarn-client模式运行时倒是正常的,原来在$SPARK_HOME/bin/spark-class文件中已经设置了持久代大小:
JAVA_OPTS="-XX:MaxPermSize=256m $OUR_JAVA_OPTS"
当以yarn-client模式运行时,driver就运行在客户端的spark-submit进程中,其JVM参数是取的spark-class文件中的设置,所谓未出现持久代溢出现象。
总结一下Spark中各个角色的JVM参数设置:
(1)Driver的JVM参数:
-Xmx,-Xms,如果是yarn-client模式,则默认读取spark-env文件中的SPARK_DRIVER_MEMORY值,-Xmx,-Xms值一样大小;如果是yarn-cluster模式,则读取的是spark-default.conf文件中的spark.driver.extraJavaOptions对应的JVM参数值。
PermSize,如果是yarn-client模式,则是默认读取spark-class文件中的JAVA_OPTS="-XX:MaxPermSize=256m $OUR_JAVA_OPTS"值;如果是yarn-cluster模式,读取的是spark-default.conf文件中的spark.driver.extraJavaOptions对应的JVM参数值。
GC方式,如果是yarn-client模式,默认读取的是spark-class文件中的JAVA_OPTS;如果是yarn-cluster模式,则读取的是spark-default.conf文件中的spark.driver.extraJavaOptions对应的参数值。
以上值最后均可被spark-submit工具中的--driver-java-options参数覆盖。
(2)Executor的JVM参数:
-Xmx,-Xms,如果是yarn-client模式,则默认读取spark-env文件中的SPARK_EXECUTOR_MEMORY值,-Xmx,-Xms值一样大小;如果是yarn-cluster模式,则读取的是spark-default.conf文件中的spark.executor.extraJavaOptions对应的JVM参数值。
PermSize,两种模式都是读取的是spark-default.conf文件中的spark.executor.extraJavaOptions对应的JVM参数值。
GC方式,两种模式都是读取的是spark-default.conf文件中的spark.executor.extraJavaOptions对应的JVM参数值。
(3)Executor数目及所占CPU个数
如果是yarn-client模式,Executor数目由spark-env中的SPARK_EXECUTOR_INSTANCES指定,每个实例的数目由SPARK_EXECUTOR_CORES指定;如果是yarn-cluster模式,Executor的数目由spark-submit工具的--num-executors参数指定,默认是2个实例,而每个Executor使用的CPU数目由--executor-cores指定,默认为1核。
每个Executor运行时的信息可以通过yarn logs命令查看到,类似于如下:
// :: INFO org.apache.spark.Logging$class.logInfo(Logging.scala:): Setting up executor with commands: List($JAVA_HOME/bin/java, -server, -XX:OnOutOfMemoryError='kill %p', -Xms1024m -Xmx1024m , -XX:PermSize=256M -XX:MaxPermSize=256M -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -Xloggc:/tmp/spark_gc.log, -Djava.io.tmpdir=$PWD/tmp, -Dlog4j.configuration=log4j-spark-container.properties, org.apache.spark.executor.CoarseGrainedExecutorBackend, akka.tcp://spark@sparktest1:41606/user/CoarseGrainedScheduler, 1, sparktest2, 3, 1>, <LOG_DIR>/stdout, 2>, <LOG_DIR>/stderr)
其中,akka.tcp://spark@sparktest1:41606/user/CoarseGrainedScheduler表示当前的Executor进程所在节点,后面的1表示Executor编号,sparktest2表示ApplicationMaster的host,接着的3表示当前Executor所占用的CPU数目。
8 序列化异常
在Spark上执行hive语句的时候,出现类似于如下的异常:
org.apache.spark.SparkDriverExecutionException: Execution error
at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:)
at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$.applyOrElse(DAGScheduler.scala:)
at akka.actor.ActorCell.receiveMessage(ActorCell.scala:)
at akka.actor.ActorCell.invoke(ActorCell.scala:)
at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:)
at akka.dispatch.Mailbox.run(Mailbox.scala:)
at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:)
at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:)
at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:)
at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:)
at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:)
Caused by: java.lang.ClassCastException: scala.collection.mutable.HashSet cannot be cast to scala.collection.mutable.BitSet
at org.apache.spark.sql.execution.BroadcastNestedLoopJoin$$anonfun$.apply(joins.scala:)
at org.apache.spark.rdd.RDD$$anonfun$.apply(RDD.scala:)
at org.apache.spark.rdd.RDD$$anonfun$.apply(RDD.scala:)
at org.apache.spark.scheduler.JobWaiter.taskSucceeded(JobWaiter.scala:)
at org.apache.spark.scheduler.DAGScheduler.handleTaskCompletion(DAGScheduler.scala:)
排查其前后的日志,发现大都是序列化的东西:
// :: INFO org.apache.spark.Logging$class.logInfo(Logging.scala:): Serialized task 8.0: as bytes in ms
// :: INFO org.apache.spark.Logging$class.logInfo(Logging.scala:): Finished TID in ms on sparktest0 (progress: /)
而在spark-default.conf中,事先设置了序列化方式为Kryo:
spark.serializer org.apache.spark.serializer.KryoSerializer
根据异常信息,可见是HashSet转为BitSet类型转换失败,Kryo把松散的HashSet转换为了紧凑的BitSet,把序列化方式注释掉之后,任务可以正常执行。难道Spark的Kryo序列化做的还不到位?此问题需要进一步跟踪。
9 Executor僵死问题
运行一个Spark任务,发现其运行速度远远慢于执行同样SQL语句的Hive的执行,甚至出现了OOM的错误,最后卡住达几小时!并且Executor进程在疯狂GC。
截取其一Task的OOM异常信息:
可以看到这是在序列化过程中发生的OOM。根据节点信息,找到对应的Executor进程,观察其Jstack信息:
Thread : (state = BLOCKED)
- java.lang.Long.valueOf(long) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.DefaultSerializers$LongSerializer.read(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Input, java.lang.Class) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.DefaultSerializers$LongSerializer.read(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Input, java.lang.Class) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.Kryo.readClassAndObject(com.esotericsoftware.kryo.io.Input) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ObjectArraySerializer.read(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Input, java.lang.Class) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.DefaultArraySerializers$ObjectArraySerializer.read(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Input, java.lang.Class) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.Kryo.readObject(com.esotericsoftware.kryo.io.Input, java.lang.Class, com.esotericsoftware.kryo.Serializer) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(com.esotericsoftware.kryo.io.Input, java.lang.Object) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.FieldSerializer.read(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Input, java.lang.Class) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.Kryo.readObject(com.esotericsoftware.kryo.io.Input, java.lang.Class, com.esotericsoftware.kryo.Serializer) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.FieldSerializer$ObjectField.read(com.esotericsoftware.kryo.io.Input, java.lang.Object) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.serializers.FieldSerializer.read(com.esotericsoftware.kryo.Kryo, com.esotericsoftware.kryo.io.Input, java.lang.Class) @bci=, line= (Compiled frame)
- com.esotericsoftware.kryo.Kryo.readClassAndObject(com.esotericsoftware.kryo.io.Input) @bci=, line= (Compiled frame)
- org.apache.spark.serializer.KryoDeserializationStream.readObject(scala.reflect.ClassTag) @bci=, line= (Compiled frame)
- org.apache.spark.serializer.DeserializationStream$$anon$.getNext() @bci=, line= (Compiled frame)
- org.apache.spark.util.NextIterator.hasNext() @bci=, line= (Compiled frame)
- org.apache.spark.storage.BlockManager$LazyProxyIterator$.hasNext() @bci=, line= (Compiled frame)
- scala.collection.Iterator$$anon$.hasNext() @bci=, line= (Compiled frame)
- org.apache.spark.util.CompletionIterator.hasNext() @bci=, line= (Compiled frame)
- org.apache.spark.InterruptibleIterator.hasNext() @bci=, line= (Compiled frame)
- scala.collection.Iterator$$anon$.hasNext() @bci=, line= (Compiled frame)
- org.apache.spark.sql.execution.HashJoin$$anonfun$execute$.apply(scala.collection.Iterator, scala.collection.Iterator) @bci=, line= (Compiled frame)
- org.apache.spark.sql.execution.HashJoin$$anonfun$execute$.apply(java.lang.Object, java.lang.Object) @bci=, line= (Interpreted frame)
- org.apache.spark.rdd.ZippedPartitionsRDD2.compute(org.apache.spark.Partition, org.apache.spark.TaskContext) @bci=, line= (Interpreted frame)
- org.apache.spark.rdd.RDD.computeOrReadCheckpoint(org.apache.spark.Partition, org.apache.spark.TaskContext) @bci=, line= (Interpreted frame)
有大量的BLOCKED线程,继续观察GC信息,发现大量的FULL GC。
分析,在插入Hive表的时候,实际上需要写HDFS,在此过程的HashJoin时,伴随着大量的Shuffle写操作,JVM的新生代不断GC,Eden Space写满了就往Survivor Space写,同时超过一定大小的数据会直接写到老生代,当新生代写满了之后,也会把老的数据搞到老生代,如果老生代空间不足了,就触发FULL GC,还是空间不够,那就OOM错误了,此时线程被Blocked,导致整个Executor处理数据的进程被卡住。
当处理大数据的时候,如果JVM配置不当就容易引起上述问题。解决的方法就是增大Executor的使用内存,合理配置新生代和老生代的大小,可以将老生代的空间适当的调大点。
10 小节
问题是比较严重,Application都直接无法运行了,但是引起问题的原因都比较小,归根结底还是部署的时候环境较为复杂,不够仔细!再接再砺!以后遇到相关的问题,会再这里持续更新,方便自己,也方便遇到类似问题的朋友们!
-------------------------------------------------------------------------------
如果您看了本篇博客,觉得对您有所收获,请点击右下角的 [推荐]
如果您想转载本博客,请注明出处
如果您对本文有意见或者建议,欢迎留言
感谢您的阅读,请关注我的后续博客
Spark on Yarn遇到的几个问题的更多相关文章
- Spark on YARN的部署
Spark on YARN的原理就是依靠yarn来调度Spark,比默认的Spark运行模式性能要好的多,前提是首先部署好hadoop HDFS并且运行在yarn上,然后就可以开始部署spark on ...
- 配置Spark on YARN集群内存
参考原文:http://blog.javachen.com/2015/06/09/memory-in-spark-on-yarn.html?utm_source=tuicool 运行文件有几个G大,默 ...
- Spark on Yarn 学习(一)
最近看到明风的关于数据挖掘平台下实用Spark和Yarn来做推荐的PPT,感觉很赞,现在基于大数据和快速计算方面技术的发展很快,随着Apache基金会上发布的一个个项目,感觉真的新技术将会不断出现在大 ...
- Spark on Yarn:任务提交参数配置
当在YARN上运行Spark作业,每个Spark executor作为一个YARN容器运行.Spark可以使得多个Tasks在同一个容器里面运行. 以下参数配置为例子: spark-submit -- ...
- 运行 Spark on YARN
运行 Spark on YARN Spark 0.6.0 以上的版本添加了在yarn上执行spark application的功能支持,并在之后的版本中持续的 改进.关于本文的内容是翻译官网的内容,大 ...
- Spark On YARN使用时上传jar包过多导致磁盘空间不够。。。
今天测试过程中发现YARN Node变成Unhealthy了,后来定位到硬盘空间不够..... 通过查找大于100M的文件时发现有N多个spark-assembly-1.4.0-SNAPSHOT-ha ...
- Spark on YARN两种运行模式介绍
本文出自:Spark on YARN两种运行模式介绍http://www.aboutyun.com/thread-12294-1-1.html(出处: about云开发) 问题导读 1.Spark ...
- Spark源码系列(七)Spark on yarn具体实现
本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思.这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一 ...
- Apache Spark源码走读之8 -- Spark on Yarn
欢迎转载,转载请注明出处,徽沪一郎. 概要 Hadoop2中的Yarn是一个分布式计算资源的管理平台,由于其有极好的模型抽象,非常有可能成为分布式计算资源管理的事实标准.其主要职责将是分布式计算集群的 ...
- Spark on Yarn
Spark on Yarn 1. Spark on Yarn模式优点 与其他计算框架共享集群资源(eg.Spark框架与MapReduce框架同时运行,如果不用Yarn进行资源分配,MapReduce ...
随机推荐
- 【转】很有用但鲜有人知的 Linux 命令
Linux命令行吸引了大多数Linux爱好者.一个正常的Linux用户一般掌握大约50-60个命令来处理每日的任务.Linux命令和它们的转换对于Linux用户.Shell脚本程序员和管理员来说是最有 ...
- HDU 5326 work (回溯,树)
题意:给一棵树,每个结点的子树下的结点都是它的统治对象,问有多少个统治对象数目为k的结点? 思路:每个结点都设一个cnt来记数,只要将每个结点往上回溯,直到树根,经过的每个结点都将计数器加1.最后再扫 ...
- Maven 安装Jar包到本地仓库
开始cmd: 例1: mvn install:install-file -DgroupId=Issues -DartifactId=beautyeye -Dversion=3.5 -Dpackagin ...
- HDU1026 Ignatius and the Princess I
解题思路:打印路径是关键,细节处理见代码. #include<cstdio> #include<cstring> #include<algorithm> using ...
- 查看Linux下端口占用情况的命令
在使用Linux系统的过程中,有时候会遇到端口被占用而导致服务无法启动的情况.比如HTTP使用80端口,但当启动Apache时,却发现此端口正在使用. 这种情况大多数是由于软件冲突.或者默认端口设置不 ...
- web app 页面旋转整体样式问题
$(window).bind("orientationchange", function (event) { if (event.orientation) { //portrait ...
- Android应用性能优化之使用SQLiteStatement优化SQLite操作
平常在做Android数据库操作时,都是用的execSQL之个方法. 今天偶然发现了SQLiteStatement这个类.让我想起了在做Java Web开发写JDBC的代码时Prestatement这 ...
- linux apache 配置fastcgi
Redhat 上 FastCGI 安装与配置 软件包 相关软件包: httpd 2.2.14 //注意版本 这个版本不会出问题 注:apache httpd安装 fcgi-2.4.0.t ...
- [Everyday Mathematics]20150219
设 $0<a<b$, 试证: $$\bex \int_a^b (x^2+1)e^{-x^2}\rd x\geq e^{-a^2}-e^{-b^2}. \eex$$
- Files
write public static void write(CharSequence from, File to, Charset charset) throws IOException { asC ...