一、概要描述

上一篇博文中主要描述了JobTracker和其几个服务(或功能)模块的接收到提交的job后的一些处理。其中很重要的一部分就作业的初始化。因为代码片段图的表达问题,本应该在上篇描述的内容,分开在本篇描述。

二、 流程描述  

1. 代码也接上文的最后一个方法 EagerTaskInitializationListener的jobAdded方法把JobInProgress类型的job放到List<JobInProgress>类型的 jobInitQueue中,有个单独的线程会对新加入的每个job进行初始化,其初始化调用的方法就是JobInProgress的方法initTasks。

2. 在JobInProgress的方法initTasks方法中,会根据传入的作业分片创建对应数量的TaskInProgress类型的maptask,同时会创建TaskInProgress类型的指定数量的reducetask。

3. TaskInProgress的初始化是由其构造函数和构造函数中调用的init方法完成的。

三、代码详细

1. EagerTaskInitializationListener的内部InitJob线程的run方法。调用JobInProgress的初始化方法。

static class InitJob implements Runnable {
private JobInProgress job;
public InitJob(JobInProgress job) {
this.job = job;
} public void run()
{
job.initTasks();
}
}

2. JobInProgress 类的initTasks方法。

主要流程:

1)根据读入的split确定map的数量,每个split一个map
2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
3)根据split的数量初始化maps
4)如果没有split,表示job已经成功结束。
5) 根据指定的reduce数量numReduceTasks创建reduce task
6)计算并且最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。

      //1)    根据读入的split确定map的数量,每个split一个map
String jobFile = profile.getJobFile();
Path sysDir = new Path(this.jobtracker.getSystemDir());
FileSystem fs = sysDir.getFileSystem(conf);
DataInputStream splitFile =
fs.open(new Path(conf.get("mapred.job.split.file")));
JobClient.RawSplit[] splits;
splits = JobClient.readSplitFile(splitFile);
numMapTasks = splits.length; //2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
int maxTasks = jobtracker.getMaxTasksPerJob();
if (maxTasks > 0 && numMapTasks + numReduceTasks > maxTasks) {
throw new IOException(
"The number of tasks for this job " +
(numMapTasks + numReduceTasks) +
" exceeds the configured limit " + maxTasks);
} //3)根据split的数量初始化maps
maps = new TaskInProgress[numMapTasks];
for(int i=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] = new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
LOG.info("Input size for job "+ jobId + " = " + inputLength);
if (numMapTasks > 0) {
LOG.info("Split info for job:" + jobId + " with " +
splits.length + " splits:");
nonRunningMapCache = createCache(splits, maxLevel);
} this.launchTime = System.currentTimeMillis(); //4)如果没有split,表示job已经成功结束。 if (numMapTasks == 0) {
//设定作业的完成时间避免下次还会判断。
this.finishTime = this.launchTime;
status.setSetupProgress(1.0f);
status.setMapProgress(1.0f);
status.setReduceProgress(1.0f);
status.setCleanupProgress(1.0f);
status.setRunState(JobStatus.SUCCEEDED);
tasksInited.set(true);
JobHistory.JobInfo.logInited(profile.getJobID(),
this.launchTime, 0, 0);
JobHistory.JobInfo.logFinished(profile.getJobID(),
this.finishTime, 0, 0, 0, 0,
getCounters());
return;
} //5) 根据指定的reduce数量numReduceTasks创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i = 0; i < numReduceTasks; i++) {
reduces[i] = new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
nonRunningReduces.add(reduces[i]);
} // 6)计算最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。
completedMapsForReduceSlowstart =
(int)Math.ceil(
(conf.getFloat("mapred.reduce.slowstart.completed.maps",
DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) *
numMapTasks)); tasksInited.set(true);
}

3. TaskInProgress的构造函数

有构造MapTask的构造函数和构造ReduceTask的构造函数。分别是如下。其主要区别在于构造mapTask是要传入输入分片信息的RawSplit,而Reduce Task则不需要。两个构造函数都要调用init方法,进行其他的初始化。

public TaskInProgress(JobID jobid, String jobFile,
RawSplit rawSplit,
JobTracker jobtracker, JobConf conf,
JobInProgress job, int partition) {
this.jobFile = jobFile;
this.rawSplit = rawSplit;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.partition = partition;
this.maxSkipRecords = SkipBadRecords.getMapperMaxSkipRecords(conf);
setMaxTaskAttempts();
init(jobid);
}
 public TaskInProgress(JobID jobid, String jobFile,
int numMaps,
int partition, JobTracker jobtracker, JobConf conf,
JobInProgress job) {
this.jobFile = jobFile;
this.numMaps = numMaps;
this.partition = partition;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.maxSkipRecords = SkipBadRecords.getReducerMaxSkipGroups(conf);
setMaxTaskAttempts();
init(jobid);
}

4.  TaskInProgress的init方法。初始化写map和reduce类型task都需要的初始化信息。

  void init(JobID jobId) {
this.startTime = System.currentTimeMillis();
this.id = new TaskID(jobId, isMapTask(), partition);
this.skipping = startSkipping();
}

完。

为了转载内容的一致性、可追溯性和保证及时更新纠错,转载时请注明来自:http://www.cnblogs.com/douba/p/hadoop_mapreduce_job_init.html。谢谢!

【Hadoop代码笔记】Hadoop作业提交之Job初始化的更多相关文章

  1. 【hadoop代码笔记】hadoop作业提交之汇总

    一.概述 在本篇博文中,试图通过代码了解hadoop job执行的整个流程.即用户提交的mapreduce的jar文件.输入提交到hadoop的集群,并在集群中运行.重点在代码的角度描述整个流程,有些 ...

  2. 【hadoop代码笔记】Mapreduce shuffle过程之Map输出过程

    一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从 ...

  3. 【Hadoop代码笔记】目录

    整理09年时候做的Hadoop的代码笔记. 开始. [Hadoop代码笔记]Hadoop作业提交之客户端作业提交 [Hadoop代码笔记]通过JobClient对Jobtracker的调用看详细了解H ...

  4. 【Hadoop代码笔记】Hadoop作业提交之客户端作业提交

    1.      概要描述仅仅描述向Hadoop提交作业的第一步,即调用Jobclient的submitJob方法,向Hadoop提交作业. 2.      详细描述Jobclient使用内置的JobS ...

  5. 【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

    一.概要描述 在上上一篇博文和上一篇博文中分别描述了jobTracker和其服务(功能)模块初始化完成后,接收JobClient提交的作业,并进行初始化.本文着重描述,JobTracker如何选择作业 ...

  6. 【hadoop代码笔记】Hadoop作业提交中EagerTaskInitializationListener的作用

    在整理FairScheduler实现的task调度逻辑时,注意到EagerTaskInitializationListener类.差不多应该是job提交相关的逻辑代码中最简单清楚的一个了. todo: ...

  7. 【Hadoop代码笔记】Hadoop作业提交之JobTracker等相关功能模块初始化

    一.概要描述 本文重点描述在JobTracker一端接收作业.调度作业等几个模块的初始化工作.想过模块的介绍会在其他文章中比较详细的描述.受理作业提交在下一篇文章中会进行描述. 为了表达的尽可能清晰一 ...

  8. 【Hadoop代码笔记】通过JobClient对Jobtracker的调用详细了解Hadoop RPC

    Hadoop的各个服务间,客户端和服务间的交互采用RPC方式.关于这种机制介绍的资源很多,也不难理解,这里不做背景介绍.只是尝试从Jobclient向JobTracker提交作业这个最简单的客户端服务 ...

  9. Hadoop学习笔记——Hadoop经常使用命令

    Hadoop下有一些经常使用的命令,通过这些命令能够非常方便操作Hadoop上的文件. 1.查看指定文件夹下的内容 语法: hadoop fs -ls 文件文件夹 2.打开某个已存在的文件 语法: h ...

  10. 【Hadoop代码笔记】Hadoop作业提交之JobTracker接收作业提交

    一.概要描述 在上一篇博文中主要描述了JobTracker接收作业的几个服务(或功能)模块的初始化过程.本节将介绍这些服务(或功能)是如何接收到提交的job.本来作业的初始化也可以在本节内描述,但是涉 ...

随机推荐

  1. Idea 使用maven+tomcat的时候,编译指定的Profile

    To build a artifact with a profile you have to create a Maven Run/Debug configuration as in the foll ...

  2. 如何从List<T>中筛选符合条件的数据的集合或个数

    方法一:Linq ChannelList就是一个List类型的数据,IsOpen 是其元素的属性 channelCount = (from channel in DevicesManager.Inst ...

  3. [HIHO1174]拓扑排序·一(拓扑排序)

    题目链接:http://hihocoder.com/problemset/problem/1174 题意:判断一个有向图是否有环,用拓扑排序,结论就是每次取出点的时候统计一下现在剩下几个点,最后没有剩 ...

  4. EASYUI+MVC4通用权限管理平台--前言

    经过多年的管理信息系统的开发工作,吸取了工作中遇到的一些问题,经过自己的总结,形成了一套比较完整的管理信息系统的通用权限管理基础开发平台. 在软件的开发过程中我们首先需要解决的是UI问题,其次是浏览器 ...

  5. 配置域名服务器报错named[822]: dns_rdata_fromtext /etc/bind/db.asertest.com mail not a valid number

    问题描述: 为了配置邮件服务器,更改了相关域名,改完后,重启bind9报错 Mar 17 14:39:39 DnsServer2 named[822]: dns_rdata_fromtext: /et ...

  6. RNN 与 LSTM 的应用

    之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural N ...

  7. gridview自定义表头

    gridview为我们提供了丰富的接口,用于满足自定义需求. 通常asp:gridview会根据绑定的列Columns自动生成表头,展现在前台元素. 序号 类别 有时候需要复杂一些的表头. 序号 类别 ...

  8. textfield tips

    关于autoSize和align属性比较好的解释,摘录下. autoSize deals with expanding the bounds of the TextField to ensure al ...

  9. phonegap 单例模式

    今天在使用云推送的时候  app打开着,然后 控制台推送一条消息 结果点击后又重新打开了一个客户端... ok,我需要的是单例,我使用了singleInstance  ,达到了效果. 引用百度知道的 ...

  10. Android 混合开发 的一些心得。

    其实所谓这个混合开发,也就是hybird,就是一些简单的,html5和native 代码之间的交互.很多电商之类的app里面都有类似的功能, 这种东西其实还是蛮重要的,主要就是你有什么功能都可以进行热 ...