【Hadoop代码笔记】Hadoop作业提交之Job初始化
一、概要描述
在上一篇博文中主要描述了JobTracker和其几个服务(或功能)模块的接收到提交的job后的一些处理。其中很重要的一部分就作业的初始化。因为代码片段图的表达问题,本应该在上篇描述的内容,分开在本篇描述。
二、 流程描述
1. 代码也接上文的最后一个方法 EagerTaskInitializationListener的jobAdded方法把JobInProgress类型的job放到List<JobInProgress>类型的 jobInitQueue中,有个单独的线程会对新加入的每个job进行初始化,其初始化调用的方法就是JobInProgress的方法initTasks。
2. 在JobInProgress的方法initTasks方法中,会根据传入的作业分片创建对应数量的TaskInProgress类型的maptask,同时会创建TaskInProgress类型的指定数量的reducetask。
3. TaskInProgress的初始化是由其构造函数和构造函数中调用的init方法完成的。
三、代码详细
1. EagerTaskInitializationListener的内部InitJob线程的run方法。调用JobInProgress的初始化方法。
static class InitJob implements Runnable {
private JobInProgress job;
public InitJob(JobInProgress job) {
this.job = job;
} public void run()
{
job.initTasks();
}
}
2. JobInProgress 类的initTasks方法。
主要流程:
1)根据读入的split确定map的数量,每个split一个map
2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
3)根据split的数量初始化maps
4)如果没有split,表示job已经成功结束。
5) 根据指定的reduce数量numReduceTasks创建reduce task
6)计算并且最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。
//1) 根据读入的split确定map的数量,每个split一个map
String jobFile = profile.getJobFile();
Path sysDir = new Path(this.jobtracker.getSystemDir());
FileSystem fs = sysDir.getFileSystem(conf);
DataInputStream splitFile =
fs.open(new Path(conf.get("mapred.job.split.file")));
JobClient.RawSplit[] splits;
splits = JobClient.readSplitFile(splitFile);
numMapTasks = splits.length; //2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
int maxTasks = jobtracker.getMaxTasksPerJob();
if (maxTasks > 0 && numMapTasks + numReduceTasks > maxTasks) {
throw new IOException(
"The number of tasks for this job " +
(numMapTasks + numReduceTasks) +
" exceeds the configured limit " + maxTasks);
} //3)根据split的数量初始化maps
maps = new TaskInProgress[numMapTasks];
for(int i=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] = new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
LOG.info("Input size for job "+ jobId + " = " + inputLength);
if (numMapTasks > 0) {
LOG.info("Split info for job:" + jobId + " with " +
splits.length + " splits:");
nonRunningMapCache = createCache(splits, maxLevel);
} this.launchTime = System.currentTimeMillis(); //4)如果没有split,表示job已经成功结束。 if (numMapTasks == 0) {
//设定作业的完成时间避免下次还会判断。
this.finishTime = this.launchTime;
status.setSetupProgress(1.0f);
status.setMapProgress(1.0f);
status.setReduceProgress(1.0f);
status.setCleanupProgress(1.0f);
status.setRunState(JobStatus.SUCCEEDED);
tasksInited.set(true);
JobHistory.JobInfo.logInited(profile.getJobID(),
this.launchTime, 0, 0);
JobHistory.JobInfo.logFinished(profile.getJobID(),
this.finishTime, 0, 0, 0, 0,
getCounters());
return;
} //5) 根据指定的reduce数量numReduceTasks创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i = 0; i < numReduceTasks; i++) {
reduces[i] = new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
nonRunningReduces.add(reduces[i]);
} // 6)计算最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。
completedMapsForReduceSlowstart =
(int)Math.ceil(
(conf.getFloat("mapred.reduce.slowstart.completed.maps",
DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) *
numMapTasks)); tasksInited.set(true);
}
3. TaskInProgress的构造函数
有构造MapTask的构造函数和构造ReduceTask的构造函数。分别是如下。其主要区别在于构造mapTask是要传入输入分片信息的RawSplit,而Reduce Task则不需要。两个构造函数都要调用init方法,进行其他的初始化。
public TaskInProgress(JobID jobid, String jobFile,
RawSplit rawSplit,
JobTracker jobtracker, JobConf conf,
JobInProgress job, int partition) {
this.jobFile = jobFile;
this.rawSplit = rawSplit;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.partition = partition;
this.maxSkipRecords = SkipBadRecords.getMapperMaxSkipRecords(conf);
setMaxTaskAttempts();
init(jobid);
}
public TaskInProgress(JobID jobid, String jobFile,
int numMaps,
int partition, JobTracker jobtracker, JobConf conf,
JobInProgress job) {
this.jobFile = jobFile;
this.numMaps = numMaps;
this.partition = partition;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.maxSkipRecords = SkipBadRecords.getReducerMaxSkipGroups(conf);
setMaxTaskAttempts();
init(jobid);
}
4. TaskInProgress的init方法。初始化写map和reduce类型task都需要的初始化信息。
void init(JobID jobId) {
this.startTime = System.currentTimeMillis();
this.id = new TaskID(jobId, isMapTask(), partition);
this.skipping = startSkipping();
}
完。
为了转载内容的一致性、可追溯性和保证及时更新纠错,转载时请注明来自:http://www.cnblogs.com/douba/p/hadoop_mapreduce_job_init.html。谢谢!
【Hadoop代码笔记】Hadoop作业提交之Job初始化的更多相关文章
- 【hadoop代码笔记】hadoop作业提交之汇总
一.概述 在本篇博文中,试图通过代码了解hadoop job执行的整个流程.即用户提交的mapreduce的jar文件.输入提交到hadoop的集群,并在集群中运行.重点在代码的角度描述整个流程,有些 ...
- 【hadoop代码笔记】Mapreduce shuffle过程之Map输出过程
一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从 ...
- 【Hadoop代码笔记】目录
整理09年时候做的Hadoop的代码笔记. 开始. [Hadoop代码笔记]Hadoop作业提交之客户端作业提交 [Hadoop代码笔记]通过JobClient对Jobtracker的调用看详细了解H ...
- 【Hadoop代码笔记】Hadoop作业提交之客户端作业提交
1. 概要描述仅仅描述向Hadoop提交作业的第一步,即调用Jobclient的submitJob方法,向Hadoop提交作业. 2. 详细描述Jobclient使用内置的JobS ...
- 【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task
一.概要描述 在上上一篇博文和上一篇博文中分别描述了jobTracker和其服务(功能)模块初始化完成后,接收JobClient提交的作业,并进行初始化.本文着重描述,JobTracker如何选择作业 ...
- 【hadoop代码笔记】Hadoop作业提交中EagerTaskInitializationListener的作用
在整理FairScheduler实现的task调度逻辑时,注意到EagerTaskInitializationListener类.差不多应该是job提交相关的逻辑代码中最简单清楚的一个了. todo: ...
- 【Hadoop代码笔记】Hadoop作业提交之JobTracker等相关功能模块初始化
一.概要描述 本文重点描述在JobTracker一端接收作业.调度作业等几个模块的初始化工作.想过模块的介绍会在其他文章中比较详细的描述.受理作业提交在下一篇文章中会进行描述. 为了表达的尽可能清晰一 ...
- 【Hadoop代码笔记】通过JobClient对Jobtracker的调用详细了解Hadoop RPC
Hadoop的各个服务间,客户端和服务间的交互采用RPC方式.关于这种机制介绍的资源很多,也不难理解,这里不做背景介绍.只是尝试从Jobclient向JobTracker提交作业这个最简单的客户端服务 ...
- Hadoop学习笔记——Hadoop经常使用命令
Hadoop下有一些经常使用的命令,通过这些命令能够非常方便操作Hadoop上的文件. 1.查看指定文件夹下的内容 语法: hadoop fs -ls 文件文件夹 2.打开某个已存在的文件 语法: h ...
- 【Hadoop代码笔记】Hadoop作业提交之JobTracker接收作业提交
一.概要描述 在上一篇博文中主要描述了JobTracker接收作业的几个服务(或功能)模块的初始化过程.本节将介绍这些服务(或功能)是如何接收到提交的job.本来作业的初始化也可以在本节内描述,但是涉 ...
随机推荐
- Idea 使用maven+tomcat的时候,编译指定的Profile
To build a artifact with a profile you have to create a Maven Run/Debug configuration as in the foll ...
- 如何从List<T>中筛选符合条件的数据的集合或个数
方法一:Linq ChannelList就是一个List类型的数据,IsOpen 是其元素的属性 channelCount = (from channel in DevicesManager.Inst ...
- [HIHO1174]拓扑排序·一(拓扑排序)
题目链接:http://hihocoder.com/problemset/problem/1174 题意:判断一个有向图是否有环,用拓扑排序,结论就是每次取出点的时候统计一下现在剩下几个点,最后没有剩 ...
- EASYUI+MVC4通用权限管理平台--前言
经过多年的管理信息系统的开发工作,吸取了工作中遇到的一些问题,经过自己的总结,形成了一套比较完整的管理信息系统的通用权限管理基础开发平台. 在软件的开发过程中我们首先需要解决的是UI问题,其次是浏览器 ...
- 配置域名服务器报错named[822]: dns_rdata_fromtext /etc/bind/db.asertest.com mail not a valid number
问题描述: 为了配置邮件服务器,更改了相关域名,改完后,重启bind9报错 Mar 17 14:39:39 DnsServer2 named[822]: dns_rdata_fromtext: /et ...
- RNN 与 LSTM 的应用
之前已经介绍过关于 Recurrent Neural Nnetwork 与 Long Short-Trem Memory 的网络结构与参数求解算法( 递归神经网络(Recurrent Neural N ...
- gridview自定义表头
gridview为我们提供了丰富的接口,用于满足自定义需求. 通常asp:gridview会根据绑定的列Columns自动生成表头,展现在前台元素. 序号 类别 有时候需要复杂一些的表头. 序号 类别 ...
- textfield tips
关于autoSize和align属性比较好的解释,摘录下. autoSize deals with expanding the bounds of the TextField to ensure al ...
- phonegap 单例模式
今天在使用云推送的时候 app打开着,然后 控制台推送一条消息 结果点击后又重新打开了一个客户端... ok,我需要的是单例,我使用了singleInstance ,达到了效果. 引用百度知道的 ...
- Android 混合开发 的一些心得。
其实所谓这个混合开发,也就是hybird,就是一些简单的,html5和native 代码之间的交互.很多电商之类的app里面都有类似的功能, 这种东西其实还是蛮重要的,主要就是你有什么功能都可以进行热 ...