一、概要描述

上一篇博文中主要描述了JobTracker和其几个服务(或功能)模块的接收到提交的job后的一些处理。其中很重要的一部分就作业的初始化。因为代码片段图的表达问题,本应该在上篇描述的内容,分开在本篇描述。

二、 流程描述  

1. 代码也接上文的最后一个方法 EagerTaskInitializationListener的jobAdded方法把JobInProgress类型的job放到List<JobInProgress>类型的 jobInitQueue中,有个单独的线程会对新加入的每个job进行初始化,其初始化调用的方法就是JobInProgress的方法initTasks。

2. 在JobInProgress的方法initTasks方法中,会根据传入的作业分片创建对应数量的TaskInProgress类型的maptask,同时会创建TaskInProgress类型的指定数量的reducetask。

3. TaskInProgress的初始化是由其构造函数和构造函数中调用的init方法完成的。

三、代码详细

1. EagerTaskInitializationListener的内部InitJob线程的run方法。调用JobInProgress的初始化方法。

static class InitJob implements Runnable {
private JobInProgress job;
public InitJob(JobInProgress job) {
this.job = job;
} public void run()
{
job.initTasks();
}
}

2. JobInProgress 类的initTasks方法。

主要流程:

1)根据读入的split确定map的数量,每个split一个map
2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
3)根据split的数量初始化maps
4)如果没有split,表示job已经成功结束。
5) 根据指定的reduce数量numReduceTasks创建reduce task
6)计算并且最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。

      //1)    根据读入的split确定map的数量,每个split一个map
String jobFile = profile.getJobFile();
Path sysDir = new Path(this.jobtracker.getSystemDir());
FileSystem fs = sysDir.getFileSystem(conf);
DataInputStream splitFile =
fs.open(new Path(conf.get("mapred.job.split.file")));
JobClient.RawSplit[] splits;
splits = JobClient.readSplitFile(splitFile);
numMapTasks = splits.length; //2)如果Task数大于该jobTracker支持的最大task数,则抛出异常。
int maxTasks = jobtracker.getMaxTasksPerJob();
if (maxTasks > 0 && numMapTasks + numReduceTasks > maxTasks) {
throw new IOException(
"The number of tasks for this job " +
(numMapTasks + numReduceTasks) +
" exceeds the configured limit " + maxTasks);
} //3)根据split的数量初始化maps
maps = new TaskInProgress[numMapTasks];
for(int i=0; i < numMapTasks; ++i) {
inputLength += splits[i].getDataLength();
maps[i] = new TaskInProgress(jobId, jobFile,
splits[i],
jobtracker, conf, this, i);
}
LOG.info("Input size for job "+ jobId + " = " + inputLength);
if (numMapTasks > 0) {
LOG.info("Split info for job:" + jobId + " with " +
splits.length + " splits:");
nonRunningMapCache = createCache(splits, maxLevel);
} this.launchTime = System.currentTimeMillis(); //4)如果没有split,表示job已经成功结束。 if (numMapTasks == 0) {
//设定作业的完成时间避免下次还会判断。
this.finishTime = this.launchTime;
status.setSetupProgress(1.0f);
status.setMapProgress(1.0f);
status.setReduceProgress(1.0f);
status.setCleanupProgress(1.0f);
status.setRunState(JobStatus.SUCCEEDED);
tasksInited.set(true);
JobHistory.JobInfo.logInited(profile.getJobID(),
this.launchTime, 0, 0);
JobHistory.JobInfo.logFinished(profile.getJobID(),
this.finishTime, 0, 0, 0, 0,
getCounters());
return;
} //5) 根据指定的reduce数量numReduceTasks创建reduce task
this.reduces = new TaskInProgress[numReduceTasks];
for (int i = 0; i < numReduceTasks; i++) {
reduces[i] = new TaskInProgress(jobId, jobFile,
numMapTasks, i,
jobtracker, conf, this);
nonRunningReduces.add(reduces[i]);
} // 6)计算最少剩下多少map task ,才可以开始Reduce task。默认是总的map task的5%,即大部分Map task完成后,就可以开始reduce task了。
completedMapsForReduceSlowstart =
(int)Math.ceil(
(conf.getFloat("mapred.reduce.slowstart.completed.maps",
DEFAULT_COMPLETED_MAPS_PERCENT_FOR_REDUCE_SLOWSTART) *
numMapTasks)); tasksInited.set(true);
}

3. TaskInProgress的构造函数

有构造MapTask的构造函数和构造ReduceTask的构造函数。分别是如下。其主要区别在于构造mapTask是要传入输入分片信息的RawSplit,而Reduce Task则不需要。两个构造函数都要调用init方法,进行其他的初始化。

public TaskInProgress(JobID jobid, String jobFile,
RawSplit rawSplit,
JobTracker jobtracker, JobConf conf,
JobInProgress job, int partition) {
this.jobFile = jobFile;
this.rawSplit = rawSplit;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.partition = partition;
this.maxSkipRecords = SkipBadRecords.getMapperMaxSkipRecords(conf);
setMaxTaskAttempts();
init(jobid);
}
 public TaskInProgress(JobID jobid, String jobFile,
int numMaps,
int partition, JobTracker jobtracker, JobConf conf,
JobInProgress job) {
this.jobFile = jobFile;
this.numMaps = numMaps;
this.partition = partition;
this.jobtracker = jobtracker;
this.job = job;
this.conf = conf;
this.maxSkipRecords = SkipBadRecords.getReducerMaxSkipGroups(conf);
setMaxTaskAttempts();
init(jobid);
}

4.  TaskInProgress的init方法。初始化写map和reduce类型task都需要的初始化信息。

  void init(JobID jobId) {
this.startTime = System.currentTimeMillis();
this.id = new TaskID(jobId, isMapTask(), partition);
this.skipping = startSkipping();
}

完。

为了转载内容的一致性、可追溯性和保证及时更新纠错,转载时请注明来自:http://www.cnblogs.com/douba/p/hadoop_mapreduce_job_init.html。谢谢!

【Hadoop代码笔记】Hadoop作业提交之Job初始化的更多相关文章

  1. 【hadoop代码笔记】hadoop作业提交之汇总

    一.概述 在本篇博文中,试图通过代码了解hadoop job执行的整个流程.即用户提交的mapreduce的jar文件.输入提交到hadoop的集群,并在集群中运行.重点在代码的角度描述整个流程,有些 ...

  2. 【hadoop代码笔记】Mapreduce shuffle过程之Map输出过程

    一.概要描述 shuffle是MapReduce的一个核心过程,因此没有在前面的MapReduce作业提交的过程中描述,而是单独拿出来比较详细的描述. 根据官方的流程图示如下: 本篇文章中只是想尝试从 ...

  3. 【Hadoop代码笔记】目录

    整理09年时候做的Hadoop的代码笔记. 开始. [Hadoop代码笔记]Hadoop作业提交之客户端作业提交 [Hadoop代码笔记]通过JobClient对Jobtracker的调用看详细了解H ...

  4. 【Hadoop代码笔记】Hadoop作业提交之客户端作业提交

    1.      概要描述仅仅描述向Hadoop提交作业的第一步,即调用Jobclient的submitJob方法,向Hadoop提交作业. 2.      详细描述Jobclient使用内置的JobS ...

  5. 【Hadoop代码笔记】Hadoop作业提交之TaskTracker获取Task

    一.概要描述 在上上一篇博文和上一篇博文中分别描述了jobTracker和其服务(功能)模块初始化完成后,接收JobClient提交的作业,并进行初始化.本文着重描述,JobTracker如何选择作业 ...

  6. 【hadoop代码笔记】Hadoop作业提交中EagerTaskInitializationListener的作用

    在整理FairScheduler实现的task调度逻辑时,注意到EagerTaskInitializationListener类.差不多应该是job提交相关的逻辑代码中最简单清楚的一个了. todo: ...

  7. 【Hadoop代码笔记】Hadoop作业提交之JobTracker等相关功能模块初始化

    一.概要描述 本文重点描述在JobTracker一端接收作业.调度作业等几个模块的初始化工作.想过模块的介绍会在其他文章中比较详细的描述.受理作业提交在下一篇文章中会进行描述. 为了表达的尽可能清晰一 ...

  8. 【Hadoop代码笔记】通过JobClient对Jobtracker的调用详细了解Hadoop RPC

    Hadoop的各个服务间,客户端和服务间的交互采用RPC方式.关于这种机制介绍的资源很多,也不难理解,这里不做背景介绍.只是尝试从Jobclient向JobTracker提交作业这个最简单的客户端服务 ...

  9. Hadoop学习笔记——Hadoop经常使用命令

    Hadoop下有一些经常使用的命令,通过这些命令能够非常方便操作Hadoop上的文件. 1.查看指定文件夹下的内容 语法: hadoop fs -ls 文件文件夹 2.打开某个已存在的文件 语法: h ...

  10. 【Hadoop代码笔记】Hadoop作业提交之JobTracker接收作业提交

    一.概要描述 在上一篇博文中主要描述了JobTracker接收作业的几个服务(或功能)模块的初始化过程.本节将介绍这些服务(或功能)是如何接收到提交的job.本来作业的初始化也可以在本节内描述,但是涉 ...

随机推荐

  1. 查看linux系统常用的命令,Linux查看系统配置常用命令

    一.linux CPU大小  cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep &qu ...

  2. [转]SQL语句优化技术分析

    一.操作符优化 1.IN 操作符 用IN写出来的SQL的优点是比较容易写及清晰易懂,这比较适合现代软件开发的风格.但是用IN的SQL性能总是比较低的,从Oracle执行的步骤来分析用IN的SQL与不用 ...

  3. hibernate的save()和persit()之间的区别

    这个问题啊,我在传智的Hibernate 视频上有小段讲解,save() 和persist() 都是持久化的保存,这两个方法在已经开启事物的情况下没多大区别:在不开启事物的时候save()方法会把数据 ...

  4. JSON 之 SuperObject(5): Format 与转义字符

    unit Unit1; interface uses   Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, For ...

  5. How can I work smarter, not just harder? Ask it forever

    How can I  work smarter, not just harder? 记住,永远要问自己这个问题.当你发现在做一件事情时,总是那么的繁琐无味,那么一定是出了什么问题. 如果一味地强调更加 ...

  6. iOS富文本(二)初识Text Kit

    概述 Text Kit 是建立在Core Text上的文本布局系统,虽然没有Core Text那么强大的文本处理功能,但是对于大多数常见的文本布局用Text Kit能够很简单的实现,而不是用Core ...

  7. file类型允许的文件格式设置问题,“选择文件”打开缓慢

    1,file类型的input对于打开的选择框的属性是由以下两个属性控制的: ①multiple="multiple" :一次可以选择多个文件 ②accept="image ...

  8. 安卓WebView中接口隐患与手机挂马利用(远程命令执行)

    安卓应用存在安全漏洞,浏览网站打开链接即可中招.目前有白帽子提交漏洞表明目前安卓平台上的应用普遍存在一个安全漏洞,用户打开一个链接就可导致远程安装恶意应用甚至完全控制用户手机,目前微信,手机QQ,QV ...

  9. POJ 3692 Kindergarten (补图是二分图的最大团问题)

    题意 幼稚园里有m个男孩和n个女孩(m.n范围都是[1,200]),男孩之间相互认识,女孩之间也相互认识,另外有部分男孩和女孩也认识.现在要举办一个活动,选取一些同学,要求所有选取的同学之间两两相互认 ...

  10. Linux技巧:一次删除一百万个文件最快方法

    昨天,我看到一个非常有趣的删除一个目录下的海量文件的方法.这个方法来自http://www.quora.com/How-can-someone-rapidly-delete-400-000-files ...