Bellman-Ford 算法及其优化

转自:http://hi.baidu.com/jzlikewei/blog/item/94db7950f96f995a1038c2cd.html

Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题。Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些。但是,原始的Bellman-Ford算法时间复杂度为 O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的《算法导论》也只介绍了基本的Bellman-Ford算法,在国内常见的基本信息学奥赛教材中也均未提及,因此该算法的知名度与被掌握度都不如Dijkstra算法。事实上,有多种形式的Bellman-Ford算法的优化实现。这些优化实现在时间效率上得到相当提升,例如近一两年被热捧的SPFA(Shortest-Path Faster Algoithm 更快的最短路径算法)算法的时间效率甚至由于Dijkstra算法,因此成为信息学奥赛选手经常讨论的话题。然而,限于资料匮乏,有关Bellman-Ford算法的诸多问题常常困扰奥赛选手。如:该算法值得掌握么?怎样用编程语言具体实现?有哪些优化?与SPFA算法有关系么?本文试图对Bellman-Ford算法做一个比较全面的介绍。给出几种实现程序,从理论和实测两方面分析他们的时间复杂度,供大家在备战省选和后续的noi时参考。

Bellman-Ford算法思想

Bellman-Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题。对于给定的带权(有向或无向)图 G=(V,E),其源点为s,加权函数 w是 边集 E 的映射。对图G运行Bellman-Ford算法的结果是一个布尔值,表明图中是否存在着一个从源点s可达的负权回路。若不存在这样的回路,算法将给出从源点s到 图G的任意顶点v的最短路径d[v]。

Bellman-Ford算法流程分为三个阶段:

(1)    初始化:将除源点外的所有顶点的最短距离估计值 d[v] ←+∞, d[s] ←0;

(2)    迭代求解:反复对边集E中的每条边进行松弛操作,使得顶点集V中的每个顶点v的最短距离估计值逐步逼近其最短距离;(运行|v|-1次)

(3)    检验负权回路:判断边集E中的每一条边的两个端点是否收敛。如果存在未收敛的顶点,则算法返回false,表明问题无解;否则算法返回true,并且从源点可达的顶点v的最短距离保存在 d[v]中。

算法描述如下:

Bellman-Ford(G,w,s) :boolean   //图G ,边集 函数 w ,s为源点

1        for each vertex v ∈ V(G) do        //初始化 1阶段

2            d[v] ←+∞

3        d[s] ←0;                             //1阶段结束

4        for i=1 to |v|-1 do               //2阶段开始,双重循环。

5           for each edge(u,v) ∈E(G) do //边集数组要用到,穷举每条边。

6              If d[v]> d[u]+ w(u,v) then      //松弛判断

7                 d[v]=d[u]+w(u,v)               //松弛操作   2阶段结束

8        for each edge(u,v) ∈E(G) do

9            If d[v]> d[u]+ w(u,v) then

10            Exit false

11    Exit true

下面给出描述性证明:

首先指出,图的任意一条最短路径既不能包含负权回路,也不会包含正权回路,因此它最多包含|v|-1条边。

其次,从源点s可达的所有顶点如果 存在最短路径,则这些最短路径构成一个以s为根的最短路径树。Bellman-Ford算法的迭代松弛操作,实际上就是按顶点距离s的层次,逐层生成这棵最短路径树的过程。

在对每条边进行1遍松弛的时候,生成了从s出发,层次至多为1的那些树枝。也就是说,找到了与s至多有1条边相联的那些顶点的最短路径;对每条边进行第2遍松弛的时候,生成了第2层次的树枝,就是说找到了经过2条边相连的那些顶点的最短路径……。因为最短路径最多只包含|v|-1 条边,所以,只需要循环|v|-1 次。

每实施一次松弛操作,最短路径树上就会有一层顶点达到其最短距离,此后这层顶点的最短距离值就会一直保持不变,不再受后续松弛操作的影响。(但是,每次还要判断松弛,这里浪费了大量的时间,怎么优化?单纯的优化是否可行?)

如果没有负权回路,由于最短路径树的高度最多只能是|v|-1,所以最多经过|v|-1遍松弛操作后,所有从s可达的顶点必将求出最短距离。如果 d[v]仍保持 +∞,则表明从s到v不可达。

如果有负权回路,那么第 |v|-1 遍松弛操作仍然会成功,这时,负权回路上的顶点不会收敛。

Bellman-Ford 算法及其优化的更多相关文章

  1. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  2. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  3. Dijkstra算法与Bellman - Ford算法示例(源自网上大牛的博客)【图论】

    题意:题目大意:有N个点,给出从a点到b点的距离,当然a和b是互相可以抵达的,问从1到n的最短距离 poj2387 Description Bessie is out in the field and ...

  4. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  5. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  6. 最短路模板(Dijkstra & Dijkstra算法+堆优化 & bellman_ford & 单源最短路SPFA)

    关于几个的区别和联系:http://www.cnblogs.com/zswbky/p/5432353.html d.每组的第一行是三个整数T,S和D,表示有T条路,和草儿家相邻的城市的有S个(草儿家到 ...

  7. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  8. 算法的优化(C语言描述)

    算法的优化 算法的优化分为全局优化和局部优化两个层次.全局优化也称为结构优化,主要是从基本控制结构优化.算法.数据结构的选择上考虑:局部优化即为代码优化,包括使用尽量小的数据类型.优化表达式.优化赋值 ...

  9. 吴恩达机器学习笔记47-K均值算法的优化目标、随机初始化与聚类数量的选择(Optimization Objective & Random Initialization & Choosing the Number of Clusters of K-Means Algorithm)

    一.K均值算法的优化目标 K-均值最小化问题,是要最小化所有的数据点与其所关联的聚类中心点之间的距离之和,因此 K-均值的代价函数(又称畸变函数 Distortion function)为: 其中

随机推荐

  1. ORA-16019: cannot use LOG_ARCHIVE_DEST_1 with LOG_ARCHIVE_DEST or LOG_ARCHIVE_DUPLEX_DEST

    用户反馈数据库设置归档后,无法启动,并报如下错误: SQL> startup ORA-: cannot use LOG_ARCHIVE_DEST_1 with LOG_ARCHIVE_DEST ...

  2. docker offical docs:Working with Containers

    enough ---------------------------------------------------------------------------------- Working wi ...

  3. Java基础之写文件——使用Formatter对象加载缓冲区(UsingAFormatter)

    控制台程序,使用Formatter对象将写入文件的数据准备好. 使用Formatter对象的format()方法,将数据值格式化到视图缓冲区charBuf中. import static java.n ...

  4. 有关于break,continue,return的区别和代码分析

    今天,用代码和结果直接解释break,continue,return的区别 1.break代码 public static void breakTest() { //break的讲解 for(int ...

  5. yii框架中应用jquery表单验证插件

    效果图: 视图层: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://w ...

  6. Oracle重置序列(不删除重建方式)

    Oracle中一般将自增sequence重置为初始1时,都是删除再重建,这种方式有很多弊端,依赖它的函数和存储过程将失效,需要重新编译. 不过还有种巧妙的方式,不用删除,利用步长参数,先查出seque ...

  7. 自动开票-不能获取汇款地址 Cannot get remit to address

    1. Cannot get remit to address 1. 查看客户Bill-to Address的Country信息; 2. 选择Receivable Manager职责,通过路径Setup ...

  8. [Ubuntu] ubuntu13.04 从php5.4降级到php5.3

    ubuntu12.10以后,默认的deb安装库上面的php版本已经是5.4了,公司的项目使用5.4的时候,还是会出现很多问题,所以不得不降级安装5.3 顺便说一句,我原来的环境是nginx + php ...

  9. Sql Server 2012 的新分页方法分析(offset and fetch) - 转载

    最近在分析 Sql Server 2012 中 offset and fetch 的新特性,发现 offset and fetch 无论语法的简洁还是功能的强大,都是相当相当不错的 其中 offset ...

  10. 必备的 Java 参考资源列表(转)

    包含必备书籍.站点.博客.活动等参考资源的完整清单级别: 初级 Ted Neward, 主管,ThoughtWorks, Neward & Associates 2009 年 3 月 02 日 ...