时间限制:10000ms

单点时限:1000ms

内存限制:256MB

描述

  万圣节的中午,A和B在吃过中饭之后,来到了一个新的鬼屋!鬼屋中一共有N个地点,分别编号为1..N,这N个地点之间互相有一些道路连通,两个地点之间可能有多条道路连通,但是并不存在一条两端都是同一个地点的道路。由于没有肚子的压迫,A和B决定好好的逛一逛这个鬼屋,逛着逛着,A产生了这样的问题:鬼屋中任意两个地点之间的最短路径是多少呢?

输入

每个测试点(输入文件)有且仅有一组测试数据。

在一组测试数据中:

第1行为2个整数N、M,分别表示鬼屋中地点的个数和道路的条数。

接下来的M行,每行描述一条道路:其中的第i行为三个整数u_i, v_i, length_i,表明在编号为u_i的地点和编号为v_i的地点之间有一条长度为length_i的道路。

对于100%的数据,满足N<=10^2,M<=10^3, 1 <= length_i <= 10^3。

对于100%的数据,满足迷宫中任意两个地点都可以互相到达。

输出

对于每组测试数据,输出一个N*N的矩阵A,其中第i行第j列表示,从第i个地点到达第j个地点的最短路径的长度,当i=j时这个距离应当为0。

样例输入

5 12

1 2 967

2 3 900

3 4 771

4 5 196

2 4 788

3 1 637

1 4 883

2 4 82

5 2 647

1 4 198

2 4 181

5 2 665

样例输出

0 280 637 198 394

280 0 853 82 278

637 853 0 771 967

198 82 771 0 196

394 278 967 196 0

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std; int n, m, map[][]; void flody(){
for(int k = ; k <= n; ++k){
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
map[i][j] = min(map[i][j], map[i][k] + map[k][j]);
}
}
}
} int scan(){
char c;
while(c = getchar(), c < '' || '' < c)
;
int ret = c - '';
while(c = getchar(), '' <= c && c <= '')
ret = ret * + c - '';
return ret;
} void print(int x){
if(x > )
print(x / );
putchar(x % + '');
}
int main(){
int u_i, v_i, length_i;
memset(map, , sizeof(map));
n = scan();
m = scan();
while(m--){
u_i = scan();
v_i = scan();
length_i = scan();
if(map[u_i][v_i] > length_i)
map[u_i][v_i] = map[v_i][u_i] = length_i;
}
flody();
for(int i = ; i <= n; ++i){
for(int j = ; j <= n; ++j){
if(i == j){ putchar(''); putchar(' ');}
else{ print(map[i][j]); putchar(' '); }
}
puts("");
}
return ;
}

Floyd算法解决最短路径问题的更多相关文章

  1. 四大算法解决最短路径问题(Dijkstra+Bellman-ford+SPFA+Floyd)

    什么是最短路径问题? 简单来讲,就是用于计算一个节点到其他所有节点的最短路径. 单源最短路算法:已知起点,求到达其他点的最短路径. 常用算法:Dijkstra算法.Bellman-ford算法.SPF ...

  2. Floyd算法 解决多元汇最短路问题

    接下来是图论问题求解最短路问题的最后一个,求解多元汇最短路问题 我们之前一般都是问1-n的最短路径,这里我们要能随便去问i到j的最短路径: 这里介绍一下Floyd算法:我们只有一个d[maxn][ma ...

  3. Floyd算法解决多源最短路问题

    说好的写dijkstra 算法堆优化版本的,但是因为,妹子需要,我还是先把Floyd算法写一下吧!啦啦啦! 咳咳,还是说正事吧! ----------------------------------- ...

  4. Floyd算法解决多源最短路径问题

    Floyd-Warshall算法是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权(但不可存在负权回路)的最短路径问题,同时也被用于计算有向图的传递闭包. Floyd-Warshall算法 ...

  5. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  6. ZOJ 1456 Minimum Transport Cost(Floyd算法求解最短路径并输出最小字典序路径)

    题目链接: https://vjudge.net/problem/ZOJ-1456 These are N cities in Spring country. Between each pair of ...

  7. 多源最短路径,一文搞懂Floyd算法

    前言 在图论中,在寻路最短路径中除了Dijkstra算法以外,还有Floyd算法也是非常经典,然而两种算法还是有区别的,Floyd主要计算多源最短路径. 在单源正权值最短路径,我们会用Dijkstra ...

  8. timus1004 最小环()Floyd 算法

    通过别人的数据搞了好久才成功,果然还是不够成熟 做题目还是算法不能融会贯通 大意即找出图中至少3个顶点的环,且将环中点按顺序输出 用floyd算法求最小环 因为floyd算法求最短路径是通过中间量k的 ...

  9. 深度解析(一六)Floyd算法

    Floyd算法(一)之 C语言详解 本章介绍弗洛伊德算法.和以往一样,本文会先对弗洛伊德算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 弗洛伊德 ...

随机推荐

  1. Linux命令-sudo

    sudo命令用于给普通用户提供额外权利来完成原本只有超级用户才有权限完成的任务, 格式:sudo [参数] 命令名称 sudo命令与su命令的区别是,su命令允许普通用户完全变更为超级管理员的身份,但 ...

  2. HDU 4647 Another Graph Game 思路+贪心

    官方题解: 若没有边权,则对点权从大到小排序即可.. 考虑边,将边权拆成两半加到它所关联的两个点的点权中即可. ..因为当两个人分别选择不同的点时,这一权值将互相抵消. #include <cs ...

  3. python学习--抓取一个网页上图片

    #!/bin/python # download_pic.py # download picture import os import sys from urllib.request import u ...

  4. Fedora 15 KDE中如何打开software management及如何应用

    Fedora 15 KDE中如何打开software management级如何应用 software management中有转载和卸载软件(Get and remove software)的功能 ...

  5. Android 判断用户2G/3G/4G移动数据网络

    Android 判断用户2G/3G/4G移动数据网络 在做 Android App 的时候,为了给用户省流量,为了不激起用户的愤怒,为了更好的用户体验,是需要根据用户当前网络情况来做一些调整的,也可以 ...

  6. iPhone 已停用

    如果你的iPhone上出现了如下的显示,你可以参考苹果官网上的  iOS设备已停用 如果你看到了这篇文章,你比我幸运多了. 参考这一个条目,你也许就不会丢失里面的数据了. 可怜的我,出现这个问题时还没 ...

  7. BISTU-(1)-4-17-2016

    A:贪心,遍历每次维护一个最便宜的价格,假如当前价格不如此前价格,就用此前价格购买当前数量的肉,每次更新最便宜的价格. #include <algorithm> #include < ...

  8. android SDK 更新

    在SDK Manager下Tools->Options打开了SDK Manager的Settings,选中“Force https://… sources to be fetched using ...

  9. 51nod1757 大灾变

    能想到二分答案+最大流判断是否符合.但是不知道如何建图qaq.参考的是http://blog.csdn.net/fsss_7/article/details/52132046的建图方法 #includ ...

  10. linux下编译软件通用方法(memcached为例)

    1)到软件的官网或其他网站下载软件的源码包 2)解压源码包,并切换到源码目录中 3)使用./configure --help查询配置帮助,里面可能会有安装指南(Installation directo ...