什么叫高次同余方程?说白了就是解决这样一个问题:

A^x=B(mod C),求最小的x值。


baby step giant step算法

题目条件:C是素数(事实上,A与C互质就可以。为什么?在BSGS算法中是要求a^m在%c条件下的逆元的,如果a、c不互质根本就没有逆元。)

如果x有解,那么0<=x<C,为什么?

我们可以回忆一下欧拉定理:

对于c是素数的情况,φ(c)=c-1

那么既然我们知道a^0=1,a^φ(c)=1(在%c的条件下)。那么0~φ(c)必定是一个循环节(不一定是最小的)。既然是%c,那么B一定是0到c-1之间的一个数。最坏的条件下,a的φ(c)以内次方%c的余数各不相同,0<=x<C时一定存在一个x满足条件。根据抽屉原理,如果在大于c的x中出现一个x值满足条件,那在它以前一定有一个更小的x值满足条件。

BSGS的算法是这样的:

首先取m=sqrt(c)向上取整。(为什么取sqrt(c)?我也不是很懂,是为了算法的效率平衡。)

然后先预处理a的0到m次方。

a^x=b ( %c )
设x=i*m+j;
即: i为x/m,j为x%m。
a^(i*m+j)=b;
b * (a^(-m))^i = a^j ( %c )

先枚举j,把右边存起来(Hash 或者 普通数组,下一步用二分查找)
枚举i,如果左边的数值曾经存储过(b * (a^(-m))^i = a^j),则 x=i*m+j。

求a^(-m):(就是a^m的逆元)

有两种方法:

方法一:根据欧拉定理

设A=a^m,那么A^φ(c)==1(%c)

A^(φ(c)-1)*A==1(%c)

到这里已经可以得到A的逆元为A^(φ(c)-1)。

继续推下去,根据c是素数,φ(c)=c-1

那么A的逆元就是A^(c-2)

方法二:相当于解a^m*x-C*y=1,根据拓展欧几里得出x就是逆元。

BSGS主要就是要注意细节,注意要去重(余数相同时只要取较小的一个)。


拓展BSGS

如果a跟c不互质,那该怎么办?

其实只需要加一小段代码就可以。

首先,我们知道:

A%C=B,那么就是A-C*x=B,如果d=gcd(A,C),且B%d==0,那么(A/d)%(C/d)=B/d是成立的。

那么我们就在A与C仍有不为一的公因数的时候,不断地从a^x中拿出一个a与c约分。过程中如果b%d!=0,那么在x>T的时候无解。

LL D=%C; LL g=,d;
while( ( d=gcd(A,C) ) != )
{
if(B%d)return -;
B/=d;C/=d;
g++;D=D*(A/d)%C;
}

最后我们的方程就变为了k*a^(x-g) == b' (%c')

用BSGS解出x后加上g就是答案。

数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)的更多相关文章

  1. 『高次同余方程 Baby Step Giant Step算法』

    高次同余方程 一般来说,高次同余方程分\(a^x \equiv b(mod\ p)\)和\(x^a \equiv b(mod\ p)\)两种,其中后者的难度较大,本片博客仅将介绍第一类方程的解决方法. ...

  2. POJ 3243 Clever Y (求解高次同余方程A^x=B(mod C) Baby Step Giant Step算法)

    不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostre ...

  3. 解高次同余方程 (A^x=B(mod C),0<=x<C)Baby Step Giant Step算法

    先给出我所参考的两个链接: http://hi.baidu.com/aekdycoin/item/236937318413c680c2cf29d4 (AC神,数论帝  扩展Baby Step Gian ...

  4. 【POJ2417】baby step giant step

    最近在学习数论,然而发现之前学的baby step giant step又忘了,于是去翻了翻以前的代码,又复习了一下. 觉得总是忘记是因为没有彻底理解啊. 注意baby step giant step ...

  5. 【学习笔记】Baby Step Giant Step算法及其扩展

    1. 引入 Baby Step Giant Step算法(简称BSGS),用于求解形如\(a^x\equiv b\pmod p\)(\(a,b,p\in \mathbb{N}\))的同余方程,即著名的 ...

  6. [置顶] hdu2815 扩展Baby step,Giant step入门

    题意:求满足a^x=b(mod n)的最小的整数x. 分析:很多地方写到n是素数的时候可以用Baby step,Giant step, 其实研究过Baby step,Giant step算法以后,你会 ...

  7. HDU 2815 Mod Tree 离散对数 扩张Baby Step Giant Step算法

    联系:http://acm.hdu.edu.cn/showproblem.php?pid=2815 意甲冠军: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQ ...

  8. HDU 2815 扩展baby step giant step 算法

    题目大意就是求 a^x = b(mod c) 中的x 用一般的baby step giant step 算法会超时 这里参考的是http://hi.baidu.com/aekdycoin/item/2 ...

  9. POJ 2417 Discrete Logging ( Baby step giant step )

    Discrete Logging Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 3696   Accepted: 1727 ...

随机推荐

  1. mysql存储过程执行权限问题

    tags: mysql  PROCEDURE 存储过程 definer SECURITY 权限 以下存储过程,限定了DEFINER为root,也就是root之外的账户是无法调用这个存储过程的. 1 2 ...

  2. 使用 Bumblebee 控制 NVIDIA 双显卡

    简介 Nvidia的双显卡切换技术叫Optimus(擎天柱),可惜只能在win7.vista下实现.Linux下没有对应的技术,当然苹果也没有.这导致独立显卡一直在启用,显卡发热升温,风扇狂转,却没有 ...

  3. [转]WinExec、ShellExecute和CreateProcess及返回值判断方式

    [转]WinExec.ShellExecute和CreateProcess及返回值判断方式 http://www.cnblogs.com/ziwuge/archive/2012/03/12/23924 ...

  4. licens 问题 Error (292028): Specified license is not valid for this machine

    集成网卡调试的时候坏了,造成了quartus 不可以用,MAC地址不对应了... 应该怎么解决呢??.

  5. Protocol-SPI协议

    说明.文章摘自:SPI协议及其工作原理浅析 http://bbs.chinaunix.net/thread-1916003-1-1.html 一.概述. SPI,Serial Peripheral I ...

  6. jta.properties transactions.properties Log already in use 解决方法

    当在resin里跑多个含有atomikos控制事物的项目时,会报错,Log already in use. 解决方法: 加jta.properties或者transactions.properties ...

  7. 【Convert Sorted List to Binary Search Tree】cpp

    题目: Given a singly linked list where elements are sorted in ascending order, convert it to a height ...

  8. 【String to Integer (atoi) 】cpp

    题目: Implement atoi to convert a string to an integer. Hint: Carefully consider all possible input ca ...

  9. WooCommerce微信支付插件免费版下载

    WooCommerce微信支付插件免费版下载 2016-05-11 点击:605 免费版来了 免费版终于来了,直接下载用吧,当然免费少一些功能,只有PC扫码支付,没有微信原生支付,没有汇率,没有退款, ...

  10. PHP数组的定义和遍历

    //常用函数//生成随机数//echo rand(3,33); //两个参数来确定随机数的范围为3-33 //日期时间函数echo time(); //取当前时间的UNIX时间戳//date_defa ...