Codeforces Round #365 (Div. 2) D 树状数组+离线处理
3.5 seconds
256 megabytes
standard input
standard output
Little Mishka enjoys programming. Since her birthday has just passed, her friends decided to present her with array of non-negative integers a1, a2, ..., an of n elements!
Mishka loved the array and she instantly decided to determine its beauty value, but she is too little and can't process large arrays. Right because of that she invited you to visit her and asked you to process m queries.
Each query is processed in the following way:
- Two integers l and r (1 ≤ l ≤ r ≤ n) are specified — bounds of query segment.
- Integers, presented in array segment [l, r] (in sequence of integers al, al + 1, ..., ar) even number of times, are written down.
- XOR-sum of written down integers is calculated, and this value is the answer for a query. Formally, if integers written down in point 2 are x1, x2, ..., xk, then Mishka wants to know the value , where — operator of exclusive bitwise OR.
Since only the little bears know the definition of array beauty, all you are to do is to answer each of queries presented.
The first line of the input contains single integer n (1 ≤ n ≤ 1 000 000) — the number of elements in the array.
The second line of the input contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109) — array elements.
The third line of the input contains single integer m (1 ≤ m ≤ 1 000 000) — the number of queries.
Each of the next m lines describes corresponding query by a pair of integers l and r (1 ≤ l ≤ r ≤ n) — the bounds of query segment.
Print m non-negative integers — the answers for the queries in the order they appear in the input.
3
3 7 8
1
1 3
0
7
1 2 1 3 3 2 3
5
4 7
4 5
1 3
1 7
1 5
0
3
1
3
2
In the second sample:
There is no integers in the segment of the first query, presented even number of times in the segment — the answer is 0.
In the second query there is only integer 3 is presented even number of times — the answer is 3.
In the third query only integer 1 is written down — the answer is 1.
In the fourth query all array elements are considered. Only 1 and 2 are presented there even number of times. The answer is .
In the fifth query 1 and 3 are written down. The answer is .
题意:给你n个数,m个区间询问 求区间出现次数为偶数次的数的异或和
题解:如果是奇数次呢?我们知道a^a=0 所以直接前缀异或和就可以处理。所以思考有没有一种反异或运算呢?自己模拟一遍发现这样是错误的。换一个思路考虑,将奇数次变为偶数次来处理,只需要计算出所要查询的区间内不同的数的异或和a 再 与这个区间的前缀异或和n做一次异或运算得到b,就能够将奇数次变为偶数次来处理(a^b=n可以得到b=a^n),那么如何快速计算一个区间内不同的数的异或和呢?离线处理,结构体存储每个查询区间的左右边界,按照右边界排序,从左向右遍历序列 树状数组维护 不断的将数添加到树状数组,若当前位置的数存在前驱,则删除前驱 (删除就是再进行一次异或a^a=0) 对于共右边界的查询区间 一次遍历得到答案,然后继续遍历。
/******************************
code by drizzle
blog: www.cnblogs.com/hsd-/
^ ^ ^ ^
O O
******************************/
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<map>
#include<algorithm>
#include<queue>
#include<cmath>
#define ll __int64
#define PI acos(-1.0)
#define mod 1000000007
using namespace std;
int n,m;
int a[];
int sum[];
int tree[];
int re[];
int pre[];
map<int,int>mp;
int lowbit(int t)
{
return t&(-t);
}
void add(int x,int y)
{
for(int i=x;i<=n;i+=lowbit(i))
tree[i]=tree[i]^y;
}
int getsum(int x)
{
int ans=;
for(int i=x;i>;i-=lowbit(i))
ans^=tree[i];
return ans;
}
struct node
{
int l,r;
int pos;
}N[];
bool cmp(struct node aa,struct node bb)
{
return aa.r<bb.r;
}
int main()
{
scanf("%d",&n);
sum[]=;
mp.clear();
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum[i]=sum[i-]^a[i];
pre[i]=mp[a[i]];
mp[a[i]]=i;
}
scanf("%d",&m);
for(int i=;i<=m;i++)
{
scanf("%d %d",&N[i].l,&N[i].r);
N[i].pos=i;
}
sort(N+,N++m,cmp);
int j=;
for(int i=;i<=m;i++)
{
for(;j<=n&&j<=N[i].r;j++)
{
if(pre[j])
add(pre[j],a[j]);
add(j,a[j]);
}
re[N[i].pos]=sum[N[i].r]^sum[N[i].l-]^getsum(N[i].r)^getsum(N[i].l-);
}
for(int i=;i<=m;i++)
printf("%d\n",re[i]);
return ;
}
Codeforces Round #365 (Div. 2) D 树状数组+离线处理的更多相关文章
- Codeforces Round #261 (Div. 2) D 树状数组应用
看着题意:[1,i]中等于a[i]的个数要大于[,jn]中等于a[j]的个数 且i<j,求有多少对这种(i,j) ,i<j可是 i前面的合法个数 要大于j后面的 看起来非常像逆序数的样子 ...
- Educational Codeforces Round 10 D. Nested Segments (树状数组)
题目链接:http://codeforces.com/problemset/problem/652/D 给你n个不同的区间,L或者R不会出现相同的数字,问你每一个区间包含多少个区间. 我是先把每个区间 ...
- Codeforces Round #365 (Div. 2) C - Chris and Road 二分找切点
// Codeforces Round #365 (Div. 2) // C - Chris and Road 二分找切点 // 题意:给你一个凸边行,凸边行有个初始的速度往左走,人有最大速度,可以停 ...
- 2016 Multi-University Training Contest 5 1012 World is Exploding 树状数组+离线化
http://acm.hdu.edu.cn/showproblem.php?pid=5792 1012 World is Exploding 题意:选四个数,满足a<b and A[a]< ...
- SPOJ DQUERY树状数组离线or主席树
D-query Time Limit: 227MS Memory Limit: 1572864KB 64bit IO Format: %lld & %llu Submit Status ...
- D-query SPOJ 树状数组+离线
D-query SPOJ 树状数组+离线/莫队算法 题意 有一串正数,求一定区间中有多少个不同的数 解题思路--树状数组 说明一下,树状数组开始全部是零. 首先,我们存下所有需要查询的区间,然后根据右 ...
- Necklace HDU - 3874 (线段树/树状数组 + 离线处理)
Necklace HDU - 3874 Mery has a beautiful necklace. The necklace is made up of N magic balls. Each b ...
- Codeforces Round #365 (Div. 2) D. Mishka and Interesting sum (离线树状数组+前缀xor)
题目链接:http://codeforces.com/contest/703/problem/D 给你n个数,m次查询,每次查询问你l到r之间出现偶数次的数字xor和是多少. 我们可以先预处理前缀和X ...
- Codeforces Round #365 (Div. 2) D - Mishka and Interesting sum(离线树状数组)
http://codeforces.com/contest/703/problem/D 题意: 给出一行数,有m次查询,每次查询输出区间内出现次数为偶数次的数字的异或和. 思路: 这儿利用一下异或和的 ...
随机推荐
- 重写 button 的创建方法
重写 button 的创建方法 //sxc时时改变 // self.videoM.progress = progress; // if ([self.videoM.downloadStr isEqua ...
- 动态链接库dll键盘钩子后台记录代码示例
//.header #ifndef _DLLHOOK_H_ #define _DLLHOOK_H_ #include <windows.h> #define DLL_EXPORT_FUN ...
- ubuntu 14.04 上安装有道词典
Ubuntu 14.04用户在安装前要更新系统,即update&dist-upgrade. 下载地址:32/64bits http://codown.youdao.com/cidian/lin ...
- USB鼠标按键驱动
现象:把USB设备接到PC 1. 右下角弹出"发现android phone" 2. 跳出一个对话框,提示你安装驱动程序 问1. 既然还没有"驱动程序",为何能 ...
- ubuntu php.ini文件位置
mc@XJ > locate php.ini/etc/php5/cli/php.ini/etc/php5/fpm/php.ini
- Android设计画面中有EditText时取消启动时自动获得焦点调用系统输入法的方法
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android" xmlns:tools= ...
- CSS基本特性
1.块状元素有大小:行内元素没有,除非脱离文档流(如float.absolute) 2.内部元素决定大小 不管外面元素是哪种类别(块状或行内),里面元素都可以撑大外面 3.外部元素决定位置
- 纯JS文本在线HTML编辑器KindEditor
KindEditor(http://www.kindsoft.net)是一款比较专业,主流,好用的在线HTML编辑器. 它除了可以将文本进行编辑.将Word中的内容复制进来外,本身还可以拖动缩放(右下 ...
- android 定时器的使用
1.android中通常是使用AlarmManager来定时启动一个单次或重复多次操作的.具体的说就是我们通过AlarmManager设定一个时间和注册一个intent到系统中,然后在该时间到来时,系 ...
- hive内部表、外部表
hive内部表.外部表区别自不用说,可实际用的时候还是要小心. Hive的数据分为表数据和元数据,表数据是Hive中表格(table)具有的数据:而元数据是用来存储表的名字,表的列和分区及其属性,表的 ...