V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)
The damped least squares method is also called the Levenberg-Marquardt method. Levenberg-Marquardt算法是最优化算法中的一种。它是使用最广泛的非线性最小二乘算法,具有梯度法和牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。
The damped least squares method can be theoretically justified as follows.Rather than just finding the minimum vector ∆θ that gives a best solution to equation (pseudo inverse method就是求的极小范数解), we find the value of ∆θ that minimizes the quantity:
where λ ∈ R is a non-zero damping constant. This is equivalent to minimizing the quantity:
The corresponding normal equation is(根据矩阵论简明教程P83 最小二乘问题:设A∈Rm×n,b∈Rm. 若x0∈Rn是Ax=b的最小二乘解,则x0是方程组ATAx=ATb的解,称该式为Ax=b的法方程组.)
This can be equivalently rewritten as:
It can be shown that JTJ + λ2I is non-singular when λ is appropriate(选取适当的参数λ可以保证矩阵JTJ + λ2I非奇异). Thus, the damped least squares solution is equal to:
Now JTJ is an n × n matrix, where n is the number of degrees of freedom. It is easy to find that (JTJ + λ2I)−1JT= JT (JJT + λ2I)−1(等式两边同乘(JTJ + λ2I)进行恒等变形). Thus:
The advantage of the equation is that the matrix being inverted is only m×m where m = 3k is the dimension of the space of target positions, and m is often much less than n. Additionally, the equation can be computed without needing to carry out the matrix inversion, instead row operations can find f such that (JJT + λ2I) f = e and then JTf is the solution. The damping constant depends on the details of the multibody and the target positions and must be chosen carefully to make equation numerically stable. The damping constant should large enough so that the solutions for ∆θ are well-behaved near singularities, but if it is chosen too large, then the convergence rate is too slow.
以平面二连杆机构为例,使用同样的V-rep模型,将目标点放置在接近机构奇异位置处,使用DLS方法求逆解。在下面的Python程序中关节角初始值就给在奇异点上,可以看出最终DLS算法还是能收敛,而pseudo inverse方法在奇异点处就无法收敛。The damped least squares method avoids many of the pseudo inverse method’s problems with singularities and can give a numerically stable method of selecting ∆θ
import vrep #V-rep library
import sys
import time
import math
import numpy as np # Starts a communication thread with the server (i.e. V-REP).
clientID=vrep.simxStart('127.0.0.1', 20001, True, True, 5000, 5) # clientID: the client ID, or -1 if the connection to the server was not possible
if clientID!=-1: #check if client connection successful
print 'Connected to remote API server'
else:
print 'Connection not successful'
sys.exit('Could not connect') # Exit from Python # Retrieves an object handle based on its name.
errorCode,J1_handle = vrep.simxGetObjectHandle(clientID,'j1',vrep.simx_opmode_oneshot_wait)
errorCode,J2_handle = vrep.simxGetObjectHandle(clientID,'j2',vrep.simx_opmode_oneshot_wait)
errorCode,target_handle = vrep.simxGetObjectHandle(clientID,'target',vrep.simx_opmode_oneshot_wait)
errorCode,consoleHandle = vrep.simxAuxiliaryConsoleOpen(clientID,'info',5,1+4,None,None,None,None,vrep.simx_opmode_oneshot_wait) uiHandle = -1
errorCode,uiHandle = vrep.simxGetUIHandle(clientID,"UI", vrep.simx_opmode_oneshot_wait)
buttonEventID = -1
err,buttonEventID,aux = vrep.simxGetUIEventButton(clientID,uiHandle,vrep.simx_opmode_streaming) L1 = 0.5 # link length
L2 = 0.5
lamda = 0.2 # damping constant
stol = 1e-2 # tolerance
nm = 100 # initial error
count = 0 # iteration count
ilimit = 1000 # maximum iteration # initial joint value
# note that workspace-boundary singularities occur when q2 approach 0 or 180 degree
q = np.array([0,0]) while True:
retcode, target_pos = vrep.simxGetObjectPosition(clientID, target_handle, -1, vrep.simx_opmode_streaming) if(nm > stol):
vrep.simxAuxiliaryConsolePrint(clientID, consoleHandle, None, vrep.simx_opmode_oneshot_wait) # "None" to clear the console window x = np.array([L1*math.cos(q[0])+L2*math.cos(q[0]+q[1]), L1*math.sin(q[0])+L2*math.sin(q[0]+q[1])])
error = np.array([target_pos[0],target_pos[1]]) - x J = np.array([[-L1*math.sin(q[0])-L2*math.sin(q[0]+q[1]), -L2*math.sin(q[0]+q[1])],\
[L1*math.cos(q[0])+L2*math.cos(q[0]+q[1]), L2*math.cos(q[0]+q[1])]]) f = np.linalg.solve(J.dot(J.transpose())+lamda**2*np.identity(2), error) dq = np.dot(J.transpose(), f)
q = q + dq nm = np.linalg.norm(error) count = count + 1
if count > ilimit:
vrep.simxAuxiliaryConsolePrint(clientID,consoleHandle,"Solution wouldn't converge\r\n",vrep.simx_opmode_oneshot_wait)
vrep.simxAuxiliaryConsolePrint(clientID,consoleHandle,'q1:'+str(q[0]*180/math.pi)+' q2:'+str(q[1]*180/math.pi)+'\r\n',vrep.simx_opmode_oneshot_wait)
vrep.simxAuxiliaryConsolePrint(clientID,consoleHandle,str(count)+' iterations'+' err:'+str(nm)+'\r\n',vrep.simx_opmode_oneshot_wait) err, buttonEventID, aux = vrep.simxGetUIEventButton(clientID,uiHandle,vrep.simx_opmode_buffer)
if ((err==vrep.simx_return_ok) and (buttonEventID == 1)):
'''A button was pressed/edited/changed. React to it here!'''
vrep.simxSetJointPosition(clientID,J1_handle, q[0]+math.pi/2, vrep.simx_opmode_oneshot )
vrep.simxSetJointPosition(clientID,J2_handle, q[1], vrep.simx_opmode_oneshot ) '''Enable streaming again (was automatically disabled with the positive event):'''
err,buttonEventID,aux=vrep.simxGetUIEventButton(clientID,uiHandle,vrep.simx_opmode_streaming) time.sleep(0.01)
参考:
V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)的更多相关文章
- V-rep学习笔记:机器人逆运动学数值解法(The Jacobian Transpose Method)
机器人运动学逆解的问题经常出现在动画仿真和工业机器人的轨迹规划中:We want to know how the upper joints of the hierarchy would rotate ...
- V-rep学习笔记:机器人逆运动学数值解法(The Pseudo Inverse Method)
There are two ways of using the Jacobian matrix to solve kinematics. One is to use the transpose of ...
- V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)
When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...
- V-rep学习笔记:机器人逆运动学解算
IK groups and IK elements VREP中使用IK groups和IK elements来进行正/逆运动学计算,一个IK group可以包含一个或者多个IK elements: I ...
- matlab学习笔记10_6 字符串与数值间的转换以及进制之间的转换
一起来学matlab-matlab学习笔记10 10_6 字符串与数值间的转换以及进制之间的转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab 程序设计与综合 ...
- ES6学习笔记(四)-数值扩展
PS: 前段时间转入有道云笔记,体验非常友好,所以笔记一般记录于云笔记中,每隔一段时间,会整理一下, 发在博客上与大家一起分享,交流和学习. 以下:
- python学习笔记(五)数值类型和类型转换
Python中的数值类型有: 整型,如2,520 浮点型,如3.14159,1.5e10 布尔类型 True和False e记法: e记法即对应数学中的科学记数法 >>> 1.5e1 ...
- ES6学习笔记(四)数值的扩展
1.二进制和八进制表示法 ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示. 0b111110111 === 503 // true 0o767 === 503 ...
- Python学习笔记(2)数值类型
进制转换 int函数任意进制转换为10进制 第一个参数传入一个字符串,任意进制的,第二个参数传入对这个字符串的解释,解释他为几进制 hex oct bin转换进制为16 8 或者2进制 例题中石油87 ...
随机推荐
- php常见细节错误
PHP编程中10个最常见的错误 PHP是一种非常流行的开源服务器端脚本语言,你在万维网看到的大多数网站都是使用php开发的.本篇经将为大家介绍PHP开发中10个最常见的问题,希望能够对朋友有所帮助. ...
- V4L2读取摄像头程序流程【转】
本文转载自:https://my.oschina.net/u/1024767/blog/210801 v4l2 操作实际上就是 open() 设备, close() 设备,以及中间过程的 ioctl( ...
- bootstrap实现 手机端滑动效果,滑动到下一页,jgestures.js插件
bootstrap能否实现 手机端滑动效果,滑动到下一页 jgestures.js插件可以解决,只需要引入一个JS文件<script src="js/jgestures.min.js& ...
- jeditable参数详解
一.导入js文件 <script type="text/javascript" src="jquery-1.10.2.min.js"></sc ...
- NLog
C# 使用NLog记录日志 C#第三方日志库Nlog NLog类库使用探索——详解配置 使用Nlog记录日志到数据库 NLog文章系列——系列文章目录以及简要介绍 NLog日志框架简写用法(write ...
- org.apache.cxf.interceptor.Fault: No such operation
webservice错误,访问的时候加后缀wsdl即可,如:http://localhost:9000/HelloWorld?wsdl
- XCode5 真机调试及发布应用
一.XCODE 真机测试 Xcode5已经很智能,只需生成一个开发证书,安装后,插入设备会自动添加,注意,当Mac系统升级后,证书需要重新生成. 证书生成步骤: 1.生成 CertificateSig ...
- ActiveMQ 安装异常
解决方式: 1.确认计算机主机名名称没有下划线: 2.如果是win7,停止ICS(运行-->services.msc找到Internet Connection Sharing (ICS)服务,改 ...
- P问题、NP问题和NPC问题
P问题.NP问题和NPC问题 这或许是众多OIer最大的误区之一. 你会经常看到网上出现“这怎么做,这不是NP问题吗”.“这个只有搜了,这已经被证明是NP问题了”之类的话.你要知道,大多数人此时 ...
- javascript学习(三) 内置对象
一:事件(Event)对象 在触发dom事件的时候都会产生一个event对象 type 获取事件类型 target 获取事件目标 stopPropagation() 阻止事件冒泡 preven ...