The damped least squares method is also called the Levenberg-Marquardt method. Levenberg-Marquardt算法是最优化算法中的一种。它是使用最广泛的非线性最小二乘算法,具有梯度法和牛顿法的优点。当λ很小时,步长等于牛顿法步长,当λ很大时,步长约等于梯度下降法的步长。

  The damped least squares method can be theoretically justified as follows.Rather than just finding the minimum vector ∆θ that gives a best solution to equation (pseudo inverse method就是求的极小范数解), we find the value of ∆θ that minimizes the quantity:

where λ ∈ R is a non-zero damping constant. This is equivalent to minimizing the quantity:

The corresponding normal equation is(根据矩阵论简明教程P83 最小二乘问题:设ARm×nbRm. 若x0RnAx=b的最小二乘解,则x0是方程组ATAx=ATb的解,称该式为Ax=b的法方程组.)

This can be equivalently rewritten as:

It can be shown that JTJ + λ2I is non-singular when λ is appropriate(选取适当的参数λ可以保证矩阵JTJ + λ2I非奇异). Thus, the damped least squares solution is equal to:

Now JT is an n × n matrix, where n is the number of degrees of freedom. It is easy to find that (JTJ + λ2I)−1JT= JT (JJT + λ2I)−1(等式两边同乘(JTJ + λ2I)进行恒等变形). Thus:

The advantage of the equation is that the matrix being inverted is only m×m where m = 3k is the dimension of the space of target positions, and m is often much less than n. Additionally, the equation can be computed without needing to carry out the matrix inversion, instead row operations can find f such that (JJT + λ2If e and then JTf is the solution. The damping constant depends on the details of the multibody and the target positions and must be chosen carefully to make equation numerically stable. The damping constant should large enough so that the solutions for ∆θ are well-behaved near singularities, but if it is chosen too large, then the convergence rate is too slow.

  以平面二连杆机构为例,使用同样的V-rep模型,将目标点放置在接近机构奇异位置处,使用DLS方法求逆解。在下面的Python程序中关节角初始值就给在奇异点上,可以看出最终DLS算法还是能收敛,而pseudo inverse方法在奇异点处就无法收敛。The damped least squares method avoids many of the pseudo inverse method’s problems with singularities and can give a numerically stable method of selecting ∆θ

import vrep             #V-rep library
import sys
import time
import math
import numpy as np # Starts a communication thread with the server (i.e. V-REP).
clientID=vrep.simxStart('127.0.0.1', 20001, True, True, 5000, 5) # clientID: the client ID, or -1 if the connection to the server was not possible
if clientID!=-1: #check if client connection successful
print 'Connected to remote API server'
else:
print 'Connection not successful'
sys.exit('Could not connect') # Exit from Python # Retrieves an object handle based on its name.
errorCode,J1_handle = vrep.simxGetObjectHandle(clientID,'j1',vrep.simx_opmode_oneshot_wait)
errorCode,J2_handle = vrep.simxGetObjectHandle(clientID,'j2',vrep.simx_opmode_oneshot_wait)
errorCode,target_handle = vrep.simxGetObjectHandle(clientID,'target',vrep.simx_opmode_oneshot_wait)
errorCode,consoleHandle = vrep.simxAuxiliaryConsoleOpen(clientID,'info',5,1+4,None,None,None,None,vrep.simx_opmode_oneshot_wait) uiHandle = -1
errorCode,uiHandle = vrep.simxGetUIHandle(clientID,"UI", vrep.simx_opmode_oneshot_wait)
buttonEventID = -1
err,buttonEventID,aux = vrep.simxGetUIEventButton(clientID,uiHandle,vrep.simx_opmode_streaming) L1 = 0.5 # link length
L2 = 0.5
lamda = 0.2 # damping constant
stol = 1e-2 # tolerance
nm = 100 # initial error
count = 0 # iteration count
ilimit = 1000 # maximum iteration # initial joint value
# note that workspace-boundary singularities occur when q2 approach 0 or 180 degree
q = np.array([0,0]) while True:
retcode, target_pos = vrep.simxGetObjectPosition(clientID, target_handle, -1, vrep.simx_opmode_streaming) if(nm > stol):
vrep.simxAuxiliaryConsolePrint(clientID, consoleHandle, None, vrep.simx_opmode_oneshot_wait) # "None" to clear the console window x = np.array([L1*math.cos(q[0])+L2*math.cos(q[0]+q[1]), L1*math.sin(q[0])+L2*math.sin(q[0]+q[1])])
error = np.array([target_pos[0],target_pos[1]]) - x J = np.array([[-L1*math.sin(q[0])-L2*math.sin(q[0]+q[1]), -L2*math.sin(q[0]+q[1])],\
[L1*math.cos(q[0])+L2*math.cos(q[0]+q[1]), L2*math.cos(q[0]+q[1])]]) f = np.linalg.solve(J.dot(J.transpose())+lamda**2*np.identity(2), error) dq = np.dot(J.transpose(), f)
q = q + dq nm = np.linalg.norm(error) count = count + 1
if count > ilimit:
vrep.simxAuxiliaryConsolePrint(clientID,consoleHandle,"Solution wouldn't converge\r\n",vrep.simx_opmode_oneshot_wait)
vrep.simxAuxiliaryConsolePrint(clientID,consoleHandle,'q1:'+str(q[0]*180/math.pi)+' q2:'+str(q[1]*180/math.pi)+'\r\n',vrep.simx_opmode_oneshot_wait)
vrep.simxAuxiliaryConsolePrint(clientID,consoleHandle,str(count)+' iterations'+' err:'+str(nm)+'\r\n',vrep.simx_opmode_oneshot_wait) err, buttonEventID, aux = vrep.simxGetUIEventButton(clientID,uiHandle,vrep.simx_opmode_buffer)
if ((err==vrep.simx_return_ok) and (buttonEventID == 1)):
'''A button was pressed/edited/changed. React to it here!'''
vrep.simxSetJointPosition(clientID,J1_handle, q[0]+math.pi/2, vrep.simx_opmode_oneshot )
vrep.simxSetJointPosition(clientID,J2_handle, q[1], vrep.simx_opmode_oneshot ) '''Enable streaming again (was automatically disabled with the positive event):'''
err,buttonEventID,aux=vrep.simxGetUIEventButton(clientID,uiHandle,vrep.simx_opmode_streaming) time.sleep(0.01)

参考:

“逆运动学”——从操作空间到关节空间(上篇)

V-rep学习笔记:机器人逆运动学数值解法(Damped Least Squares / Levenberg-Marquardt Method)的更多相关文章

  1. V-rep学习笔记:机器人逆运动学数值解法(The Jacobian Transpose Method)

    机器人运动学逆解的问题经常出现在动画仿真和工业机器人的轨迹规划中:We want to know how the upper joints of the hierarchy would rotate ...

  2. V-rep学习笔记:机器人逆运动学数值解法(The Pseudo Inverse Method)

    There are two ways of using the Jacobian matrix to solve kinematics. One is to use the transpose of ...

  3. V-rep学习笔记:机器人逆运动学数值解法(Cyclic Coordinate Descent Method)

    When performing inverse kinematics (IK) on a complicated bone chain, it can become too complex for a ...

  4. V-rep学习笔记:机器人逆运动学解算

    IK groups and IK elements VREP中使用IK groups和IK elements来进行正/逆运动学计算,一个IK group可以包含一个或者多个IK elements: I ...

  5. matlab学习笔记10_6 字符串与数值间的转换以及进制之间的转换

    一起来学matlab-matlab学习笔记10 10_6 字符串与数值间的转换以及进制之间的转换 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考书籍 <matlab 程序设计与综合 ...

  6. ES6学习笔记(四)-数值扩展

    PS: 前段时间转入有道云笔记,体验非常友好,所以笔记一般记录于云笔记中,每隔一段时间,会整理一下, 发在博客上与大家一起分享,交流和学习. 以下:

  7. python学习笔记(五)数值类型和类型转换

    Python中的数值类型有: 整型,如2,520 浮点型,如3.14159,1.5e10 布尔类型 True和False e记法: e记法即对应数学中的科学记数法 >>> 1.5e1 ...

  8. ES6学习笔记(四)数值的扩展

    1.二进制和八进制表示法 ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示. 0b111110111 === 503 // true 0o767 === 503 ...

  9. Python学习笔记(2)数值类型

    进制转换 int函数任意进制转换为10进制 第一个参数传入一个字符串,任意进制的,第二个参数传入对这个字符串的解释,解释他为几进制 hex oct bin转换进制为16 8 或者2进制 例题中石油87 ...

随机推荐

  1. android实操--练习1

    这两天有空,打算把一些文档整理一下,快要考试了,找一些简单的例子来做做,重温安卓的知识. 下面是第一个练习: 实现很简单,下面我们来看看: 首先新建一个安卓项目Demo1 接着是界面的布局(包括act ...

  2. Mongodb 笔记09 备份、部署MongoDB

    备份 1. 只有在有信心能在紧急情况下完成迅速部署的情况下,备份才是有用的.所以,无论选择了哪种备份技术,一定要对备份及恢复备份的操作进行练习,知道了然于心. 2. 通常情况下,应对副本集的非主节点( ...

  3. ch1:python3 查看版本号、安装目录和工作空间目录

    查看python版本: 每次打开python顶端会显示版本号 在程序中判断版本号可以通过import sys  sys.version 在dos下可以通过python -V查看 安装目录:C:\Pyt ...

  4. 如何自动生成Facade 的EJB

    1.jbuilder中连接数据库,注意:java:/DataSource 2.选择数据表,右健选择"create cmp 2.x..." 3.添加"findAll&quo ...

  5. du -sh

    评估文件空间利用率: [root@vm-xiluhua][/home]$ du -sh /home 409M /home --exclude选项,排除指定模式的文件的大小 [root@vm-xiluh ...

  6. node-webkit教程<>Native UI API 之Menu(菜单)

    node-webkit教程(6)Native UI API 之Menu(菜单)1 前言... 2 6.1  Menu 概述... 3 6.2  menu api6 6.2.1  new Menu([o ...

  7. StringBuffer类的方法

    public class Page116 { /** * StringBuffer类的练习 * @param args * @throws IOException */ public static v ...

  8. JavaScript和angularJs语法支持严格模式:”use strict”

    如果给JavaScript和angularjs代码标志为“严格模式”,则其中运行的所有代码都必然是严格模式下的.其一:如果在语法检测时发现语法问题,则整个代码块失效,并导致一个语法异常.其二:如果在运 ...

  9. python: linux下安装redis

    Python连接时报拒绝连接,需要重装redis: 1) 卸载redis sudo apt-get remove redis-server sudo apt-get autoremove 2)编译安装 ...

  10. sql 2000以及2005以上获取数据库中所有的表(不包括系统表)

    ---------------------------------------------------------------------------- --sql 2005以上数据库 --- 获取数 ...