121.

Say you have an array for which the ith element is the price of a given stock on day i.

If you were only permitted to complete at most one transaction (ie, buy one and sell one share of the stock), design an algorithm to find the maximum profit.

class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if(n < )
return ;
int mini = prices[], ans = , i;
for(i = ; i < n; i++)
{
if(prices[i]-mini > ans)
ans = prices[i]-mini;
if(prices[i] < mini)
mini = prices[i];
}
return ans;
}
};

122.

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times). However, you may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if(n < )
return ;
int mini = prices[], maxi = prices[], ans = , i;
for(i = ; i < n; i++)
{
if(prices[i] > maxi)
maxi = prices[i];
else if(prices[i] < maxi)
{
ans += maxi - mini;
maxi = mini = prices[i];
}
}
ans += maxi - mini;
return ans;
}
};

123.

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most two transactions.

class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if(n < )
return ;
vector<int> forward(n, ), backward(n, );
int mini, maxi, ans, i;
forward[] = ;
mini = prices[];
for(i = ; i < n; i++)
{
forward[i] = max(forward[i-], prices[i] - mini);
if(prices[i] < mini)
mini = prices[i];
}
backward[n-] = ;
maxi = prices[n-];
for(i = n-; i >= ; i--)
{
backward[i] = max(backward[i+], maxi - prices[i]);
if(prices[i] > maxi)
maxi = prices[i];
}
ans = ;
for(i = ; i < n; i++)
{
ans = max(ans, forward[i] + backward[i]);
}
return ans;
}
};

188.

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete at most k transactions.

Note:
You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
int n = prices.size(), i, j;
if(n < )
return ;
if(k >= (n>>))
{
int ans = ;
for(i = ; i < n-; i++)
{
if(prices[i+]-prices[i] > )
ans += prices[i+]-prices[i];
}
return ans;
}
vector<int> buy(k+, INT_MIN), sell(k+, );
for(i = ; i < n; i++)
{
for(j = ; j <= k; j++)
{
buy[j] = max(buy[j], sell[j-] - prices[i]);
sell[j] = max(sell[j], buy[j] + prices[i]);
}
}
return sell[k];
}
};

buy[i]表示买i个最多剩多少钱。sell[i]表示卖i个最多有多少钱。

buy[j] = max(buy[j], sell[j-1] - prices[i]);  //看买prices[i]是否有原来划算
class Solution {
public:
int maxProfit(int k, vector<int>& prices) {
int n = prices.size(), i, j;
if(n < )
return ;
if(k >= (n>>))
{
int ans = ;
for(i = ; i < n-; i++)
{
if(prices[i+]-prices[i] > )
ans += prices[i+]-prices[i];
}
return ans;
}
vector<vector<int>> dp(n, vector<int>(k+, )); //dp[i][j]表示到第i天卖j个最多赚多少钱
for(i = ; i <= k; i++)
{
int buy = -prices[];
for(j = ; j < n; j++)
{
dp[j][i] = max(j > ? dp[j-][i] : , buy + prices[j]);
buy = max(buy, dp[j][i-] - prices[j]);
}
}
return dp[n-][k];
}
};

和上面一个算法思路一样。

309.

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]
class Solution {
public:
int maxProfit(vector<int>& prices) {
int n = prices.size();
if(n <= )
return ;
vector<int> sell(n+, );
int buy = -prices[], i;
for(i = ; i <= n; i++)
{
sell[i] = max(sell[i-], buy + prices[i-]);
buy = max(buy, sell[i-] - prices[i-]);
}
return sell[n];
}
};

sell[i-2]表示cooldown[i-1]。

121. 122. 123. 188. Best Time to Buy and Sell Stock *HARD* 309. Best Time to Buy and Sell Stock with Cooldown -- 买卖股票的更多相关文章

  1. 领扣-121/122/123/188 最佳买卖时机 Best Time to Buy and Sell MD

    Markdown版本笔记 我的GitHub首页 我的博客 我的微信 我的邮箱 MyAndroidBlogs baiqiantao baiqiantao bqt20094 baiqiantao@sina ...

  2. Leetocode7道买卖股票问题总结(121+122+123+188+309+901+714)

    题目1----121. 买卖股票的最佳时机I: 链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock/ 给定一个数组, ...

  3. LeetCode No.121,122,123

    No.121 MaxProfit 买卖股票的最佳时机 题目 给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格. 如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你 ...

  4. [LeetCode] 309. Best Time to Buy and Sell Stock with Cooldown 买卖股票的最佳时间有冷却期

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  5. leetcode 121 122 123 . Best Time to Buy and Sell Stock

    121题目描述: 解题:记录浏览过的天中最低的价格,并不断更新可能的最大收益,只允许买卖一次的动态规划思想. class Solution { public: int maxProfit(vector ...

  6. [LeetCode] 121. Best Time to Buy and Sell Stock 买卖股票的最佳时间

    Say you have an array for which the ith element is the price of a given stock on day i. If you were ...

  7. [LeetCode] 122. Best Time to Buy and Sell Stock II 买卖股票的最佳时间 II

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  8. [LeetCode] 123. Best Time to Buy and Sell Stock III 买卖股票的最佳时间 III

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

  9. [LeetCode] 188. Best Time to Buy and Sell Stock IV 买卖股票的最佳时间 IV

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...

随机推荐

  1. Java——再看IO

    一.编码问题 utf-8编码中,一个中文占3个字节,一个英文占1个字节:gbk编码中,一个中文占2个字节,一个英文占1个字节. Java是双字节编码,为utf-16be编码,是说一个字符(无论中文还是 ...

  2. DevExpress中使用DocumentManager,并确保不重复

    https://www.devexpress.com/Support/Center/Question/Details/Q411356 void ActivatForm(Type someType) { ...

  3. Find Current Job Openings For Oracle Forms & Reports

    Oracle Form & Reports developer jobs are always in demand, candidates who have Oracle D2k, Oracl ...

  4. [原创] 使用LP Wizard 10.5 制作 Allegro PCB封装

    本文只讲述使用 Calculator 和 Wizard 功能制作封装,通常学会使用这种方法,通用的标准封装就都可以生成了.下面以一个简单的SOIC-8封装的芯片来说明软件使用方法. 第一步,查找相关d ...

  5. STM32的I2C通信

    I2C总线是由NXP(原PHILIPS)公司设计,有十分简洁的物理层定义,其特性如下: 只要求两条总线线路:一条串行数据线SDA,一条串行时钟线SCL: 每个连接到总线的器件都可以通过唯一的地址和一直 ...

  6. CATransition(过渡)

    属性动画只对图层的可动画属性起作用,所以如果要改变一个不能动画的属性(比如图片),或者从层级关系中添加或者移除图层,属性动画将不起作用. 于是就有了过渡的概念.过渡并不像属性动画那样平滑地在两个值之间 ...

  7. CGAffineTransform与CATransform3D

    CGAffineTransform 1.CG的前缀告诉我们,CGAffineTransform类型属于Core Graphics框架,Core Graphics实际上是一个严格意义上的2D绘图API, ...

  8. Codeforces Round #135 (Div. 2) E. Parking Lot 线段数区间合并

    E. Parking Lot time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  9. C#垃圾回收机制(GC)

    GC的前世与今生 虽然本文是以.net作为目标来讲述GC,但是GC的概念并非才诞生不久.早在1958年,由鼎鼎大名的图林奖得主John McCarthy所实现的Lisp语言就已经提供了GC的功能,这是 ...

  10. asp.netMVC中,视图层和控制器层的传值

    Asp.Net Mvc 控制器与视图的数据传递 摘要:本文将讨论asp.net mvc框架中的数据传递. 数据传递也就是控制器和视图之间的交互,比如在视图中提交的数据,在控制器怎么获取,或者控制器从业 ...