这篇借鉴的文章主要是用于后续文章知识点的扩散,在此特作备份和扩散学习交流。

网际层包括:IP、ICMP、IGMP 以及处在网际层实际工作在链路层的 ARP 和 RARP等等协议。

1.IP协议

互联网上的每个接口必须有一个唯一的Internet地址(也称作IP地址)。IP地址长32 bit。IP协议是TCP/IP协议的核心,所有的TCP,UDP,ICMP,IGMP的数据都以IP数据格式传输。要注意的是,IP不是可靠的协议,这是说,IP协议没有提供一种数据未传达以后的处理机制--这被认为是上层协议--TCP或UDP要做的事情。所以这也就出现了TCP是一个可靠的协议,而UDP就没有那么可靠的区别。Internet地址并不采用平面形式的地址空间,如1、2、3等。IP地址具有一定的结构,五类不同的互联网地址格式如下:

                                                                                    

1.1.IP协议头

如图所示

挨个解释它是教科书的活计,我感兴趣的只是那八位的TTL字段,还记得这个字段是做什么的么?这个字段规定该数据包在穿过多少个路由之后才会被抛弃(这里就体现出来IP协议包的不可靠性,它不保证数据被送达),某个ip数据包每穿过一个路由器,该数据包的TTL数值就会减少1,当该数据包的TTL成为零,它就会被自动抛弃。这个字段的最大值也就是255,也就是说一个协议包也就在路由器里面穿行255次就会被抛弃了,根据系统的不同,这个数字也不一样,一般是32或者是64,Tracerouter这个工具就是用这个原理工作的,tranceroute的-m选项要求最大值是255,也就是因为这个TTL在IP协议里面只有8bit。

现在的ip版本号是4,所以也称作IPv4。现在还有IPv6,而且运用也越来越广泛了。

1.2.IP路由选择

当一个IP数据包准备好了的时候,IP数据包(或者说是路由器)是如何将数据包送到目的地的呢?它是怎么选择一个合适的路径来"送货"的呢?

最特殊的情况是目的主机和主机直连,那么主机根本不用寻找路由,直接把数据传递过去就可以了。至于是怎么直接传递的,这就要靠ARP协议了,后面会讲到。

稍微一般一点的情况是,主机通过若干个路由器(router)和目的主机连接。那么路由器就要通过ip包的信息来为ip包寻找到一个合适的目标来进行传递,比如合适的主机,或者合适的路由。路由器或者主机将会用如下的方式来处理某一个IP数据包

  1. 如果IP数据包的TTL(生命周期)以到,则该IP数据包就被抛弃。
  2. 搜索路由表,优先搜索匹配主机,如果能找到和IP地址完全一致的目标主机,则将该包发向目标主机
  3. 搜索路由表,如果匹配主机失败,则匹配同子网的路由器,这需要“子网掩码(1.3.)”的协助。如果找到路由器,则将该包发向路由器。
  4. 搜索路由表,如果匹配同子网路由器失败,则匹配同网号(第一章有讲解)路由器,如果找到路由器,则将该包发向路由器。
  5. 搜索陆游表,如果以上都失败了,就搜索默认路由,如果默认路由存在,则发包
  6. 如果都失败了,就丢掉这个包。

这再一次证明了,ip包是不可靠的。因为它不保证送达。

1.3.子网寻址

IP地址的定义是网络号+主机号。但是现在所有的主机都要求子网编址,也就是说,把主机号在细分成子网号+主机号。最终一个IP地址就成为 网络号码+子网号+主机号。例如一个B类地址:210.30.109.134。一般情况下,这个IP地址的红色部分就是网络号,而蓝色部分就是子网号,绿色部分就是主机号。至于有多少位代表子网号这个问题上,这没有一个硬性的规定,取而代之的则是子网掩码,校园网相信大多数人都用过,在校园网的设定里面有一个255.255.255.0的东西,这就是子网掩码。子网掩码是由32bit的二进制数字序列,形式为是一连串的1和一连串的0,例如:255.255.255.0(二进制就是11111111.11111111.11111111.00000000)对于刚才的那个B类地址,因为210.30是网络号,那么后面的109.134就是子网号和主机号的组合,又因为子网掩码只有后八bit为0,所以主机号就是IP地址的后八个bit,就是134,而剩下的就是子网号码--109。

2. ARP协议

还记得数据链路层的以太网的协议中,每一个数据包都有一个MAC地址头么?我们知道每一块以太网卡都有一个MAC地址,这个地址是唯一的,那么IP包是如何知道这个MAC地址的?这就是ARP协议的工作。

ARP(地址解析)协议是一种解析协议,本来主机是完全不知道这个IP对应的是哪个主机的哪个接口,当主机要发送一个IP包的时候,会首先查一下自己的ARP高速缓存(就是一个IP-MAC地址对应表缓存),如果查询的IP-MAC值对不存在,那么主机就向网络发送一个ARP协议广播包,这个广播包里面就有待查询的IP地址,而直接收到这份广播的包的所有主机都会查询自己的IP地址,如果收到广播包的某一个主机发现自己符合条件,那么就准备好一个包含自己的MAC地址的ARP包传送给发送ARP广播的主机,而广播主机拿到ARP包后会更新自己的ARP缓存(就是存放IP-MAC对应表的地方)。发送广播的主机就会用新的ARP缓存数据准备好数据链路层的的数据包发送工作。

一个典型的arp缓存信息如下,在任意一个系统里面用“arp -a”命令:

1
2
3
4
Interface: 192.168.11.3 --- 0x2
  Internet Address      Physical Address      Type
  192.168.11.1          00-0d-0b-43-a0-2f     dynamic
  192.168.11.2          00-01-4a-03-5b-ea     dynamic

都会得到这样的结果。这样的高速缓存是有时限的,一般是20分钟(伯克利系统的衍生系统)。

3.ICMP协议

前面讲到了,IP协议并不是一个可靠的协议,它不保证数据被送达,那么,自然的,保证数据送达的工作应该由其他的模块来完成。其中一个重要的模块就是ICMP(网络控制报文)协议。

当传送IP数据包发生错误--比如主机不可达,路由不可达等等,ICMP协议将会把错误信息封包,然后传送回给主机。给主机一个处理错误的机会,这 也就是为什么说建立在IP层以上的协议是可能做到安全的原因。ICMP数据包由8bit的错误类型和8bit的代码和16bit的校验和组成。而前 16bit就组成了ICMP所要传递的信息。书上的图6-3清楚的给出了错误类型和代码的组合代表的意思。

尽管在大多数情况下,错误的包传送应该给出ICMP报文,但是在特殊情况下,是不产生ICMP错误报文的。如下

  1. ICMP差错报文不会产生ICMP差错报文(出IMCP查询报文)(防止IMCP的无限产生和传送)
  2. 目的地址是广播地址或多播地址的IP数据报。
  3. 作为链路层广播的数据报。
  4. 不是IP分片的第一片。
  5. 源地址不是单个主机的数据报。这就是说,源地址不能为零地址、环回地址、广播地 址或多播地址。

虽然里面的一些规定现在还不是很明白,但是所有的这一切规定,都是为了防止产生ICMP报文的无限传播而定义的。

ICMP协议大致分为两类,一种是查询报文,一种是差错报文。其中查询报文有以下几种用途:

  1. ping查询(不要告诉我你不知道ping程序)
  2. 子网掩码查询(用于无盘工作站在初始化自身的时候初始化子网掩码)
  3. 时间戳查询(可以用来同步时间)

而差错报文则产生在数据传送发生错误的时候。就不赘述了。

3.1 ICMP的应用--ping

ping可以说是ICMP的最著名的应用,当我们某一个网站上不去的时候。通常会ping一下这个网站。ping会回显出一些有用的信息。一般的信息如下:

1
2
3
4
5
6
7
8
9
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
Reply from 10.4.24.1: bytes=32 time<1ms TTL=255
 
Ping statistics for 10.4.24.1:
    Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),
Approximate round trip times in milli-seconds:
    Minimum = 0ms, Maximum = 0ms, Average = 0ms

ping这个单词源自声纳定位,而这个程序的作用也确实如此,它利用ICMP协议包来侦测另一个主机是否可达。原理是用类型码为0的ICMP发请 求,受到请求的主机则用类型码为8的ICMP回应。ping程序来计算间隔时间,并计算有多少个包被送达。用户就可以判断网络大致的情况。我们可以看到, ping给出来了传送的时间和TTL的数据。我给的例子不太好,因为走的路由少,有兴趣地可以ping一下国外的网站比如sf.net,就可以观察到一些 丢包的现象,而程序运行的时间也会更加的长。
ping还给我们一个看主机到目的主机的路由的机会。这是因为,ICMP的ping请求数据报在每经过一个路由器的时候,路由器都会把自己的ip放到该数 据报中。而目的主机则会把这个ip列表复制到回应icmp数据包中发回给主机。但是,无论如何,ip头所能纪录的路由列表是非常的有限。如果要观察路由, 我们还是需要使用更好的工具,就是要讲到的Traceroute(windows下面的名字叫做tracert)。

3.2 ICMP的应用--Traceroute

Traceroute是用来侦测主机到目的主机之间所经路由情况的重要工具,也是最便利的工具。前面说到,尽管ping工具也可以进行侦测,但是,因为ip头的限制,ping不能完全的记录下所经过的路由器。所以Traceroute正好就填补了这个缺憾。

Traceroute的原理是非常非常的有意思,它受到目的主机的IP后,首先给目的主机发送一个TTL=1(还记得TTL是什么吗?)的UDP(后面就 知道UDP是什么了)数据包,而经过的第一个路由器收到这个数据包以后,就自动把TTL减1,而TTL变为0以后,路由器就把这个包给抛弃了,并同时产生 一个主机不可达的ICMP数据报给主机。主机收到这个数据报以后再发一个TTL=2的UDP数据报给目的主机,然后刺激第二个路由器给主机发ICMP数据 报。如此往复直到到达目的主机。这样,traceroute就拿到了所有的路由器ip。从而避开了ip头只能记录有限路由IP的问题。

有人要问,我怎么知道UDP到没到达目的主机呢?这就涉及一个技巧的问题,TCP和UDP协议有一个端口号定义,而普通的网络程序只监控少数的几个号码较 小的端口,比如说80,比如说23,等等。而traceroute发送的是端口号>30000(真变态)的UDP报,所以到达目的主机的时候,目的 主机只能发送一个端口不可达的ICMP数据报给主机。主机接到这个报告以后就知道,主机到了,所以,说Traceroute是一个骗子一点也不为过:)

Traceroute程序里面提供了一些很有用的选项,甚至包含了IP选路的选项,请察看man文档来了解这些,这里就不赘述了。

4 IGMP(略)

5 RARP(略)

Android网络编程系列 一 TCP/IP协议族之网际层的更多相关文章

  1. Android网络编程系列 一 TCP/IP协议族之链路层

    这篇借鉴的文章主要是用于后续文章知识点的扩散,在此特作备份和扩散学习交流. 数据链路层有三个目的: 为IP模块发送和 接收IP数据报. 为ARP模块发送ARP请求和接收ARP应答. 为RARP发送RA ...

  2. Android网络编程系列 一 TCP/IP协议族之传输层

    这篇借鉴的文章主要是用于后续文章知识点的扩散,在此特作备份和扩散学习交流. 传输层中有TCP协议与UDP协议. 1.UDP介绍 UDP是传输层协议,和TCP协议处于一个分层中,但是与TCP协议不同,U ...

  3. Android网络编程系列 一 TCP/IP协议族

    在学习和使用Android网路编程时,我们接触的仅仅是上层协议和接口如Apache的httpclient或者Android自带的httpURlconnection等等.对于这些接口的底层实现我们也有必 ...

  4. TCP/IP协议族之链路层(二)

    TCP/IP学习记录,如有错误请指正,谢谢!!! TCP/IP协议族之链路层(二) 链路层是最底层协议,主要有三个目的: 1. 为IP模块发送和接收IP数据报 2. 为ARP模块发送ARP请求和接收A ...

  5. 网络基础篇(一)--TCP/IP协议族

    TCP/IP协议族是一个分层,多协议通信体系. 1 TCP/IP协议族体系结构 TCP/IP协议族自底而上分为四层: 数据链路层, 网络层, 传输层和应用层. 1.1 数据链路层 实现网卡接口的网络驱 ...

  6. 网络编程3之TCP/IP协议

    在TCP/IP协议中,最重要的协议是[TCP.UDP.IP]协议 1.TCP/IP协议特点 1)Internet上不同系统之间互联的一组协议 2)为分散和不同类型的硬件提供通用的编程接口. 3)TCP ...

  7. 网络基础之TCP/IP协议族

    一.TCP/IP协议族 1.什么是协议? 计算机与网络设备相互通信依赖于相同的方法,比如,双方通信基于何种语言等.而把通信所依赖的这一切方法统称为规则,而我们就把这种规则称为协议. 协议中存在各种各样 ...

  8. OSI模型和TCP/IP协议族(三)

    TCP/IP协议族 TCP/IP协议族的开发要比OSI模型更早,因此TCP/IP协议族的分层结构无法准确地与OSI模型一一对应.原始的TCP/IP协议族定义为建立再硬件基础上的四个软件层,不通过目前T ...

  9. Android网络编程系列 一 Socket抽象层

     在<Android网络编程>系列文章中,前面已经将Java的通信底层大致的描述了,在我们了解了TCP/IP通信族架构及其原理,接下来我们就开始来了解基于tcp/ip协议层的Socket抽 ...

随机推荐

  1. The 3n + 1 problem 分类: POJ 2015-06-12 17:50 11人阅读 评论(0) 收藏

    The 3n + 1 problem Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 53927   Accepted: 17 ...

  2. shell脚本之lnmp的搭建

    !/bin/bash #this script is source packages installed lnmp .xmal yum -y install wget #"========= ...

  3. [kipmi0]进程导致系统负载高

    最近一个用户这边服务器运行四五天就会出现服务器负载很高的情况,原本正常是0.3~0.5左右  不正常的时候会达到3,重启机器就正常,开始以为是程序问题,后来在观察的时候把程序给杀掉了 然后重启,结果负 ...

  4. CentOS6 启动流程图文解剖

    我们在使用Linux操作系统的时候,我们只需按下电源键,等待,然后输入账户和密码就可以使用Linux操作系统了.那么在按下电源到输入账号和密码之前,操作系统都做了些什么?下面就来讲述在这段时间发生的动 ...

  5. C# 发送邮件代码

    C# 发送邮件代码 MailMessage mailMsg = new MailMessage(); //using System.Net; 引用 mailMsg.From = new MailAdd ...

  6. MVC 中使用EF

    EF 1)简单查询 后台代码 using MvcApplication18.Models; using System; using System.Collections.Generic; using ...

  7. stm32中断服务函数

    你打开stm32的启动文件,例如startup_stm32f10x_hd.s 里面有很多中断跳转的入口.用白话说就是固件库帮你写好了发生什么中断时跳转到哪里,这些名字是一个函数名,你要把这些函数写出来 ...

  8. MySQL操作数据库和表的常用命令新手教程

    1.查看数据库 获取服务器上的数据库列表通常很有用.执行show databases;命令就可以搞定. mysql> show databases; 2.创建数据库 mysql> crea ...

  9. BZOJ 2627 JZPKIL

    题目链接:http://www.lydsy.com:808/JudgeOnline/problem.php?id=2627 题意:计算下面式子 思路: A先不管.我们来搞B部分.下面说如何计算B这个最 ...

  10. iOS深入学习:(UITableView系列3:insertRow)

    前面一篇博客,我使用了reloadData来刷新界面,但是这样没有动画效果,那么我这里通过insertRowsAtIndexPaths:withRowAnimation设置动画效果,希望对大家有所帮助 ...