题目:

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

链接: http://leetcode.com/problems/longest-increasing-subsequence/

题解:

求数组的最长递增子序列。经典dp问题,在很多大学讲DP的教程里,都会出现这道题以及Longest Common Subsequence。 这里其实也有O(nlogn)的方法,比如Patience Sorting一类的,二刷再研究。下面我们来看DP。这个问题一开始可以被分解为recursive的子问题,一步一步优化就可以得到带有memorization的iterative解法。初始化dp[i] = 1,即一个元素的递增序列。 假设以i - 1结尾的subarray里的LIS为dp[i - 1],那么我们要求以i结尾的subarray里的LIS,dp[i]的时候,要把这个新的元素和之前所有的元素进行比较,同时逐步比较dp[j] + 1与dp[i],假如发现更长的序列,我们则更新dp[i] = dp[j] + 1,继续增加j进行比较。当i之前的元素全部便利完毕以后,我们得到了当前以i结尾的subarray里的LIS,就是dp[i]。

Time Complexity - O(n2), Space Complexity - O(n2)。

public class Solution {
public int lengthOfLIS(int[] nums) {
if(nums == null || nums.length == 0) {
return 0;
}
int len = nums.length, max = 0;
int[] dp = new int[len]; for(int i = 0; i < len; i++) {
dp[i] = 1;
for(int j = 0; j < i; j++) {
if(nums[i] > nums[j] && dp[j] + 1 > dp[i]) {
dp[i] = dp[j] + 1;
}
}
max = Math.max(max, dp[i]);
} return max;
}
}

题外话:

#300题!又是一个里程碑了。虽然之前做的很多题目都忘记了,但相信二刷会好好巩固和再学习。微信群里一起刷题的小伙伴们,好多已经拿到了Amazon的Offer,我也要好好努力才行啊。这周休假在家,周三继续修理房子,希望一切顺利。 同时希望在这周能够把LeetCode第一遍完成,然后早日学习新的知识,比如多线程,设计模式,以及一些系统设计等等。

Reference:

https://leetcode.com/discuss/67609/short-java-solution-using-dp-o-n-log-n

https://leetcode.com/discuss/67554/9-lines-c-code-with-o-nlogn-complexity

https://leetcode.com/discuss/67533/c-typical-dp-2-solution-and-nlogn-solution-from-geekforgeek

https://leetcode.com/discuss/67565/simple-java-o-nlogn-solution

https://leetcode.com/discuss/71129/space-log-time-short-solution-without-additional-memory-java

https://leetcode.com/discuss/67687/c-o-nlogn-solution-with-explainations-4ms

https://leetcode.com/discuss/69309/c-o-nlogn-with-explanation-and-references

https://leetcode.com/discuss/67572/o-nlogn-and-o-n-2-java-solutions

https://leetcode.com/discuss/67689/4ms-o-nlogn-non-recursive-easy-to-understand-java-solution

https://leetcode.com/discuss/67553/share-java-dp-solution

https://leetcode.com/discuss/72127/easy-to-understand-solution-using-dp-with-video-explanation

https://leetcode.com/discuss/67806/another-o-n-log-n-python

http://www.geeksforgeeks.org/longest-monotonically-increasing-subsequence-size-n-log-n/

http://www.cs.cornell.edu/~wdtseng/icpc/notes/dp2.pdf

https://courses.engr.illinois.edu/cs473/sp2011/lectures/08_notes.pdf

http://www.cs.toronto.edu/~vassos/teaching/c73/handouts/lis.pdf

http://www.cs.mun.ca/~kol/courses/2711-w08/dynprog-2711.pdf

https://courses.cs.washington.edu/courses/cse417/02wi/slides/06dp-lis.pdf

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf

https://en.wikipedia.org/wiki/Patience_sorting

https://en.wikipedia.org/wiki/Longest_increasing_subsequence

300. Longest Increasing Subsequence的更多相关文章

  1. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  2. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  3. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  4. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  5. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  6. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  7. [leetcode] 300. Longest Increasing Subsequence (Medium)

    题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...

  8. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

  9. [LC] 300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

随机推荐

  1. 大作业NABC分析结果

    大作业NABC分析结果 这次的大作业计划制作一款关于七巧板的游戏软件.关于编写的APP的NABC需求分析: N:需求 ,本款软件主要面向一些在校的大学生,他们在校空闲时间比较多,而且热衷于一些益智类游 ...

  2. liferay7中如何Hiding the default Success Message

    下面介绍如何把在Liferay 7中如何把action执行成功之后的信息不显示,因为宝宝有需要,就去查了相关源码和资料. 如果想要某个portlet不显示执行成功的信息,在doProcessActio ...

  3. bzoj 1565 最大权闭合子图

    因为每个植物都有保护的点(每排相邻的右面的算是保护左面的),所以连他和保护 的点一条边,然后每个点有自己的权值,要找到最大的权值且满足每个点在访问时他 的前驱一定被访问,那么反向建边,转化为后继必须访 ...

  4. Codeforces Round #278 (Div. 2)

    题目链接:http://codeforces.com/contest/488 A. Giga Tower Giga Tower is the tallest and deepest building ...

  5. 【BZOJ】【3850】ZCC Loves Codefires

    贪心 就跟NOIP2012国王游戏差不多,考虑交换相邻两题的位置,对其他题是毫无影响的,然后看两题顺序先后哪个更优.sort即可. WA了一次的原因:虽然ans开的是long long,但是在这一句: ...

  6. The Brain as a Universal Learning Machine

    The Brain as a Universal Learning Machine This article presents an emerging architectural hypothesis ...

  7. HttpWatch 安装后在IE上打开

    启动浏览器, 在空白地方左键,  显示出菜单栏 菜单栏中选择"查看">"浏览器栏">"HttpWatch"启动HttpWatch ...

  8. ios瀑布流

    http://blog.csdn.net/shenjx1225/article/details/9037631

  9. DOS系统功能调用表(INT 21H)

    AH 功能 调用参数 返回参数 00 程序终止(同INT 20H) CS=程序段前缀 01 键盘输入并回显 AL=输入字符 02 显示输出 DL=输出字符 03 异步通迅输入 AL=输入数据 04 异 ...

  10. 关于JS中的constructor与prototype

    ======================================================================== 在学习JS的面向对象过程中,一直对constructo ...