题目:

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

链接: http://leetcode.com/problems/longest-increasing-subsequence/

题解:

求数组的最长递增子序列。经典dp问题,在很多大学讲DP的教程里,都会出现这道题以及Longest Common Subsequence。 这里其实也有O(nlogn)的方法,比如Patience Sorting一类的,二刷再研究。下面我们来看DP。这个问题一开始可以被分解为recursive的子问题,一步一步优化就可以得到带有memorization的iterative解法。初始化dp[i] = 1,即一个元素的递增序列。 假设以i - 1结尾的subarray里的LIS为dp[i - 1],那么我们要求以i结尾的subarray里的LIS,dp[i]的时候,要把这个新的元素和之前所有的元素进行比较,同时逐步比较dp[j] + 1与dp[i],假如发现更长的序列,我们则更新dp[i] = dp[j] + 1,继续增加j进行比较。当i之前的元素全部便利完毕以后,我们得到了当前以i结尾的subarray里的LIS,就是dp[i]。

Time Complexity - O(n2), Space Complexity - O(n2)。

public class Solution {
public int lengthOfLIS(int[] nums) {
if(nums == null || nums.length == 0) {
return 0;
}
int len = nums.length, max = 0;
int[] dp = new int[len]; for(int i = 0; i < len; i++) {
dp[i] = 1;
for(int j = 0; j < i; j++) {
if(nums[i] > nums[j] && dp[j] + 1 > dp[i]) {
dp[i] = dp[j] + 1;
}
}
max = Math.max(max, dp[i]);
} return max;
}
}

题外话:

#300题!又是一个里程碑了。虽然之前做的很多题目都忘记了,但相信二刷会好好巩固和再学习。微信群里一起刷题的小伙伴们,好多已经拿到了Amazon的Offer,我也要好好努力才行啊。这周休假在家,周三继续修理房子,希望一切顺利。 同时希望在这周能够把LeetCode第一遍完成,然后早日学习新的知识,比如多线程,设计模式,以及一些系统设计等等。

Reference:

https://leetcode.com/discuss/67609/short-java-solution-using-dp-o-n-log-n

https://leetcode.com/discuss/67554/9-lines-c-code-with-o-nlogn-complexity

https://leetcode.com/discuss/67533/c-typical-dp-2-solution-and-nlogn-solution-from-geekforgeek

https://leetcode.com/discuss/67565/simple-java-o-nlogn-solution

https://leetcode.com/discuss/71129/space-log-time-short-solution-without-additional-memory-java

https://leetcode.com/discuss/67687/c-o-nlogn-solution-with-explainations-4ms

https://leetcode.com/discuss/69309/c-o-nlogn-with-explanation-and-references

https://leetcode.com/discuss/67572/o-nlogn-and-o-n-2-java-solutions

https://leetcode.com/discuss/67689/4ms-o-nlogn-non-recursive-easy-to-understand-java-solution

https://leetcode.com/discuss/67553/share-java-dp-solution

https://leetcode.com/discuss/72127/easy-to-understand-solution-using-dp-with-video-explanation

https://leetcode.com/discuss/67806/another-o-n-log-n-python

http://www.geeksforgeeks.org/longest-monotonically-increasing-subsequence-size-n-log-n/

http://www.cs.cornell.edu/~wdtseng/icpc/notes/dp2.pdf

https://courses.engr.illinois.edu/cs473/sp2011/lectures/08_notes.pdf

http://www.cs.toronto.edu/~vassos/teaching/c73/handouts/lis.pdf

http://www.cs.mun.ca/~kol/courses/2711-w08/dynprog-2711.pdf

https://courses.cs.washington.edu/courses/cse417/02wi/slides/06dp-lis.pdf

https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf

https://en.wikipedia.org/wiki/Patience_sorting

https://en.wikipedia.org/wiki/Longest_increasing_subsequence

300. Longest Increasing Subsequence的更多相关文章

  1. [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  2. Leetcode 300 Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  3. leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)

    https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...

  4. [leetcode]300. Longest Increasing Subsequence最长递增子序列

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

  5. 【leetcode】300.Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  6. 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)

    Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...

  7. [leetcode] 300. Longest Increasing Subsequence (Medium)

    题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...

  8. LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)

    题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...

  9. [LC] 300. Longest Increasing Subsequence

    Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...

随机推荐

  1. 微软职位内部推荐-SDEII

    微软近期Open的职位: Software Engineer II for Customer Experience (Level 62+) Location: Suzhou Contact Perso ...

  2. Struts2入门教程

    最近闲来无事,学习s2sh框架,这里先写一点struts2的入门 我的环境 eclipse 4.3.2 tomcat 7.0.52 jdk 1.7.0_45 struts2 2.3.16.3 在ecl ...

  3. OGNL表达式介绍

    OGNL是Object-Graph Navigation Language的缩写,它是一种功能强大的表达式语言(Expression Language,简称为EL),通过它简单一致的表达式语法,可以存 ...

  4. 7、android的button如何平铺一张图片?

    我想要实现的效果:,但是设计师给的是这样的:. 首先我想到的是这就像windows电脑设置壁纸有什么拉伸.自适应.平铺等类型,这个应该就是传说中的平铺吧. 那么我们知道,一个普通的button,设置他 ...

  5. VIMTUTOR《VIM教程》

    =============================================================================== =      欢     迎     阅 ...

  6. 802.11 wireless 三

    802.11 wireless 3watts,milliwatts,and Decibels瓦特(功率单位)的定义是1焦耳/秒微波炉1000瓦特,手机100-200毫瓦 decibels(分贝:比较能 ...

  7. JS--事件对象中部份浏览器不兼容方法

    测试时主要用的浏览器是Firefox 28.0.IE11.IE8.Chrome 34.0  一.什么是事件对象:当触发某个事件的时候,会产生一个事件对象,这个对象包含着所有的与事件有关的信息,包括导致 ...

  8. Codeforces Round #278 (Div. 2)

    题目链接:http://codeforces.com/contest/488 A. Giga Tower Giga Tower is the tallest and deepest building ...

  9. javascript中继承(一)-----原型链继承的个人理解

    [寒暄]好久没有更新博客了,说来话长,因为我下定决心要从一个后台程序员转为Front End,其间走过了一段漫长而艰辛的时光,今天跟大家分享下自己对javascript中原型链继承的理解. 总的说来, ...

  10. 【转载】C++编译出现 error C2664: 不能将参数 2 从“const char [5]”转换为“LPCTSTR”解决办法。

    编译程序的时候出现这样的错误,原因是在新建MFC项目的时候,设置字符集Unicode的属性. 解决方法一: 在VC2010的解决方案管理器窗口内,右击你的项目“项目”,然后选“属性”(最后一项),再点 ...