Hashing filters for very fast massive filtering
If you have a need for thousands of rules, for example if you have a lot of clients or computers, all with different QoS specifications, you may find that the kernel spends a lot of time matching all those rules.
By default, all filters reside in one big chain which is matched in descending order of priority. If you have 1000 rules, 1000 checks may be needed to determine what to do with a packet.
Matching would go much quicker if you would have 256 chains with each four rules - if you could divide packets over those 256 chains, so that the right rule will be there.
Hashing makes this possible. Let's say you have 1024 cable modem customers in your network, with IP addresses ranging from 1.2.0.0 to 1.2.3.255, and each has to go in another bin, for example 'lite', 'regular' and 'premium'. You would then have 1024 rules like this:
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.0.0 classid 1:1
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.0.1 classid 1:1
...
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.3.254 classid 1:3
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.3.255 classid 1:2
To speed this up, we can use the last part of the IP address as a 'hash key'. We then get 256 tables, the first of which looks like this:
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.0.0 classid 1:1
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.1.0 classid 1:1
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.2.0 classid 1:3
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.3.0 classid 1:2
The next one starts like this:
# tc filter add dev eth1 parent 1:0 protocol ip prio 100 match ip src \
1.2.0.1 classid 1:1
...
This way, only four checks are needed at most, two on average.
Configuration is pretty complicated, but very worth it by the time you have this many rules. First we make a filter root, then we create a table with 256 entries:
# tc filter add dev eth1 parent 1:0 prio 5 protocol ip u32
# tc filter add dev eth1 parent 1:0 prio 5 handle 2: protocol ip u32 divisor 256
Now we add some rules to entries in the created table:
# tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
match ip src 1.2.0.123 flowid 1:1
# tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
match ip src 1.2.1.123 flowid 1:2
# tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
match ip src 1.2.3.123 flowid 1:3
# tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 2:7b: \
match ip src 1.2.4.123 flowid 1:2
This is entry 123, which contains matches for 1.2.0.123, 1.2.1.123, 1.2.2.123, 1.2.3.123, and sends them to 1:1, 1:2, 1:3 and 1:2 respectively. Note that we need to specify our hash bucket in hex, 0x7b is 123.
Next create a 'hashing filter' that directs traffic to the right entry in the hashing table:
# tc filter add dev eth1 protocol ip parent 1:0 prio 5 u32 ht 800:: \
match ip src 1.2.0.0/16 \
hashkey mask 0x000000ff at 12 \
link 2:
Ok, some numbers need explaining. The default hash table is called 800:: and all filtering starts there. Then we select the source address, which lives as position 12, 13, 14 and 15 in the IP header, and indicate that we are only interested in the last part. This will be sent to hash table 2:, which we created earlier.
It is quite complicated, but it does work in practice and performance will be staggering. Note that this example could be improved to the ideal case where each chain contains 1 filter!
Hashing filters for very fast massive filtering的更多相关文章
- 基于Fast Bilateral Filtering 算法的 High-Dynamic Range(HDR) 图像显示技术。
一.引言 本人初次接触HDR方面的知识,有描述不正确的地方烦请见谅. 为方便文章描述,引用部分百度中的文章对HDR图像进行简单的描述. 高动态范围图像(High-Dynamic Range,简称HDR ...
- Tone Mapping算法系列一:基于Fast Bilateral Filtering 算法的 High-Dynamic Range(HDR) 图像显示技术。
一.引言 本人初次接触HDR方面的知识,有描述不正确的地方烦请见谅. 为方便文章描述,引用部分百度中的文章对HDR图像进行简单的描述. 高动态范围图像(High-Dynamic Range,简称HDR ...
- Optimizing shaper — hashing filters (HTB)
I have a very nice shaper in my linux box :-) How the configurator works — it’s another question, he ...
- 阅读Real-Time O(1) Bilateral Filtering 一文的相关感受。
研究双边滤波有很长一段时间了,最近看了一篇Real-Time O(1) Bilateral Filtering的论文,标题很吸引人,就研读了一番,经过几天的攻读,基本已理解其思想,现将这一过程做一简单 ...
- 编写 capture filters
编写 capture filters 如有转载,请在转载前给我提一些建议.谢谢. 百度查不到资料,为无能的百度搜索增加点营养的料. 读 http://www.n-cg.net/CaptureFilte ...
- Gradle Goodness: Copy Files with Filtering
Gradle Goodness: Copy Files with Filtering Gradle's copy task is very powerful and includes filterin ...
- CV code references
转:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program][SI ...
- CV codes代码分类整理合集 《转》
from:http://www.sigvc.org/bbs/thread-72-1-1.html 一.特征提取Feature Extraction: SIFT [1] [Demo program] ...
- [转]awsome c++
原文链接 Awesome C++ A curated list of awesome C++ (or C) frameworks, libraries, resources, and shiny th ...
随机推荐
- Octopus系列之如何让前台的js脚本变得灵活重用
Octopus系列如何让前台的js脚本变得灵活,重用 方式1:ajax方式 方式2:form表单方式 面向对象的脚本封装 jQuery的封装 做Web开发的少不了前台Ajax的使用, 返回true:f ...
- HDU 5773 The All-purpose Zero 求LIS
求最长上升子序列长度: 单纯的dp时间复杂度是O(n*n)的 dp[i] = max(dp[j]+1); (0=<j<=i-1 && a[i]>a[j]) 用二分可以 ...
- .net调用存储过程碰到的一个问题
问题描述 报错信息如下: Execution of user code in the .NET Framework is disabled. Enable "clr enabled" ...
- RewriteRule参数
RewriteCond指令格式 [说明]定义重写发生的条件 [语法]RewriteCond TestString CondPattern [flags] RewriteCond指令定义一条规则条件.在 ...
- POJ 1083 Moving Tables 思路 难度:0
http://poj.org/problem?id=1083 这道题题意是有若干段线段,每次要求线段不重叠地取,问最少取多少次. 因为这些线段都是必须取的,所以需要让空隙最小 思路: 循环直到线段全部 ...
- C++-什么时候需要在类的构造函数中使用初始化列表
1,如果基类没有default构造函数,则意味着其不能自己初始化.如果其被派生,派生类的构造函数要负责调用基类的构造函数,并传递给它需要的参数.下例中Base 2,如果类成员没有默认构造函数.下例中E ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- eval函数的缺陷
1.今天在维护产品目录的时候,发现了个奇葩的事情,eval函数转换出错,查验之后发现字符串中如果加入了换行符就会导致该问题. 2.测试程序 info.file [{productDirIds:'1', ...
- (转载)java常见的ClassNotFoundException
1 - java.lang.ClassNotFoundException: org.apache.commons.logging.LogFactory 添加包common-logging.jar2 ...
- linux下磁盘进行分区、文件系统创建、挂载和卸载
任务的原因:由于,刚购买来的服务器需要将磁盘挂载到操作系统上,为了挂载磁盘首先要对磁盘进行分区,然后进行文件系统的创建,最后将磁盘挂载到操作系统上的某个目录. MBR(Master Boot Reco ...