【BZOJ】【1406】【AHOI2007】密码箱
数论
Orz iwtwiioi
果然数论很捉鸡>_>完全不知道怎么下手
$$x^2 \equiv 1 \pmod n \rightarrow (x+1)*(x-1)=k*n $$
所以,我们得到$$n | (x+1)(x-1)$$
那么有什么用呢?注意到整除是个神奇的关系= =所以我们可以令$n=a*b$,那么对于每个x,一定有$a|(x+1) 且 b|(x-1)$ 或是 $a|(x-1) 且 b|(x+1)$
然后?我们可以$O(\sqrt{n})$枚举a,得到b,然而,x+1(或者x-1)是b的倍数!所以我们可以枚举这个倍数,再判断与它对应的x-1(或x+1)是否满足与a的整除关系,就可以找到x啦!
最后再用set判重……
Orzzzzzz……
太神了……
/**************************************************************
Problem: 1406
User: Tunix
Language: C++
Result: Accepted
Time:8 ms
Memory:1276 kb
****************************************************************/ //BZOJ 1406
#include<set>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
typedef long long LL;
set<LL> s;
set<LL>::iterator it;
int main(){
#ifndef ONLINE_JUDGE
freopen("1406.in","r",stdin);
freopen("1406.out","w",stdout);
#endif
LL n; scanf("%lld",&n);
for(LL i=;i*i<=n;i++) if (n%i==){
LL j=n/i,x;
for(LL k=;j*k+<n;k++){
x=j*k+;
if ((x+)%i==) s.insert(x);
}
for(LL k=;j*k-<n;k++){
x=j*k-;
if ((x-)%i==) s.insert(x);
}
}
if (!s.size()){puts("None");return ;}
for(it=s.begin();it!=s.end();it++)
printf("%lld\n",*it);
return ;
}
1406: [AHOI2007]密码箱
Time Limit: 5 Sec Memory Limit: 64 MB
Submit: 877 Solved: 509
[Submit][Status][Discuss]
Description
码的提示。经过艰苦的破译,小可可发现,这些图标表示一个数以及这个数与密码的关系。假设这个数是n,密码为x,那么可以得到如下表述:
密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1。
小可可知道满足上述条件的x可能不止一个,所以一定要把所有满足条件的x计算出来,密码肯定就在其中。计算的过程是很艰苦的,你能否编写一个程序来帮助小
可可呢?(题中x,n均为正整数)
Input
Output
Sample Input
Sample Output
5
7
11
HINT
Source
【BZOJ】【1406】【AHOI2007】密码箱的更多相关文章
- BZOJ 1406: [AHOI2007]密码箱
二次联通门 : BZOJ 1406: [AHOI2007]密码箱 /* BZOJ 1406: [AHOI2007]密码箱 数论 要求 x^2 ≡ 1 (mod n) 可以转换为 x ^ 2 - k * ...
- bzoj 1406: [AHOI2007]密码箱 二次剩餘
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 701 Solved: 396[Submit][Status] D ...
- BZOJ 1406: [AHOI2007]密码箱( 数论 )
(x+1)(x-1) mod N = 0, 枚举N的>N^0.5的约数当作x+1或者x-1... ------------------------------------------------ ...
- BZOJ 1406: [AHOI2007]密码箱 exgcd+唯一分解定理
推出来了一个解法,但是感觉复杂度十分玄学,没想到秒过~ Code: #include <bits/stdc++.h> #define ll long long #define N 5000 ...
- 1406: [AHOI2007]密码箱
1406: [AHOI2007]密码箱 Time Limit: 5 Sec Memory Limit: 64 MBSubmit: 1591 Solved: 944[Submit][Status][ ...
- 【BZOJ】1406: [AHOI2007]密码箱
http://www.lydsy.com/JudgeOnline/problem.php?id=1406 题意:求$0<=x<n, 1<=n<=2,000,000,000, 且 ...
- BZOJ_1406_[AHOI2007]密码箱_枚举+数学
BZOJ_1406_[AHOI2007]密码箱_枚举+数学 Description 在一次偶然的情况下,小可可得到了一个密码箱,听说里面藏着一份古代流传下来的藏宝图,只要能破解密码就能打开箱子,而箱子 ...
- 洛谷——P4296 [AHOI2007]密码箱
P4296 [AHOI2007]密码箱 密码x大于等于0,且小于n,而x的平方除以n,得到的余数为1. 求这个密码,$1<=n<=2,000,000,000$ 暴力枚举,数据有点儿水$O( ...
- 【BZOJ 1406】 [AHOI2007]密码箱
[链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] \(x^2%n=1\) \(x^2-1 = k*n\) \((x+1)*(x-1) % n == 0\) 设\(n=a*b\) 对于 ...
- BZOJ 1406 密码箱
直接两层枚举就行了. 避免排序可以用set. #include<iostream> #include<cstdio> #include<cstring> #incl ...
随机推荐
- 命名空间中的“MvcBuildViews”。 无效
VS2013转VS2010时出现如下错误: 错误提示: 警告 1 元素 命名空间“http://schemas.microsoft.com/developer/msbuild/2003”中的“Prop ...
- php中intval()函数
格式:int intval(mixed $var [, int $base]); 1.intval()的返回值是整型,1或者0.可作用于数组或者对象(对象报错信息:Notice: Object of ...
- 入门级的PHP验证码
参考了网上PHP 生成验证码很多是类封装了的,没有封装的验证码其实只是几个GD函数而已,初学者可以看看,可以尝试自己封装. <?php session_start(); $im = ...
- 在Nginx 下运行 Laravel5.1 的配置
一.nginx 的 vhost.conf 配置: server { listen ; server_name sub.domain.com; set $root_path '/srv/www/defa ...
- 用序列化工具写入xml
标本: <?xml version="1.0" encoding="UTF-8" standalone="true"?> //文 ...
- web app 开发
去除手机浏览器标签默认高亮边框 -webkit-tap-highlight-color 属性 属性描述:这个属性可以指设置透明度.如果未设置透明度,iOS上的Safari会给予颜色一个默认的透明度.把 ...
- 14)Java中Assert
J2SE 1.4在语言上提供了一个新特性,就是assertion(断言)功能,它是该版本在Java语言方面最大的革新.在软件开发中,assertion是一种经典的调试.测试方式. jvm 断言默认是关 ...
- Python学习之静态页面数据抓取
1 页面信息抓取 定义getPage函数,根据传入的页码get到整个页面的html内容 getContent函数,通过正则匹配把页面中的表格部分的html内容取出 最后定义getData函数,同样是通 ...
- django-url调度器-初级篇
Django 遵从 MVC 模型,并将其特色化为 MTV 模型.模型的核心是通过用户访问的 url 来指向处理的函数,而函数处理后返回相应的结果.所以url决定了用户访问的入口,另外表单处理的提交地址 ...
- Erlang generic standard behaviours -- gen
在分析 gen_server (或者是gen_fsm )之前,首先应该弄明白,gen 这个module . -module(gen). -compile({inline,[get_node/1]}). ...