题目大意:有N个数字a[N],每输出连续的一串,它的费用是 “这行数字的平方加上一个常数M”。问如何输出使得总费用最小。(n<=500000)

分析:动态规划方程为:dp[i]=dp[j]+M+(sum[i]-sum[j])^2;

右边有一项为:sum[i]*sum[j]。考虑用单调队列。

令dp[i]=g,dp[j]+M+sum[i]^2+sum[j]^2=y,sum[j]=y,2*sum[i]=k

则上式变为g=y-kx,即y=kx+g。此为直线方程。

我们要使得g最小,即可以考虑有一条斜率为k的直线自下向上平移,设它接触到的第一个点为(xp,yp),则p为最佳决策点,所以最佳决策点的集合构成了一个下凸包的形状。又因为斜率k是2*sum[i],随着i的递增,斜率k是递增的,所以凸包中的点具备单调性,可以使用单调队列来优化。

#include<cstdio>
#include<cstring>
using namespace std;
#define MAXN 500005
int n,m,t,head,tail,arr[MAXN];
int f[MAXN],sum[MAXN];
int st[MAXN];
bool turnleft(int i,int j,int k)
{
int y1=f[i]+sum[i]*sum[i]-f[j]-sum[j]*sum[j];
int y2=f[j]+sum[j]*sum[j]-f[k]-sum[k]*sum[k];
int x1=(sum[i]-sum[j]);
int x2=(sum[j]-sum[k]);
if(x2*y1>x1*y2)return 1;
else return 0;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
for(int i=1;i<=n;i++)
{
scanf("%d",&arr[i]);
sum[i]=sum[i-1]+arr[i];
}
f[0]=0;//arr[1]*arr[1]+m;
head=tail=1;
st[tail++]=0;
for(int i=1;i<=n;i++)
{
int k;
for(;head<tail-1;)
{
if(f[st[head+1]]+sum[st[head+1]]*sum[st[head+1]]-f[st[head]]-sum[st[head]]*sum[st[head]]>2*sum[i]*(sum[st[head+1]]-sum[st[head]]))
break;
else head++;
}
k=st[head];
f[i]=f[k]+(sum[i]-sum[k])*(sum[i]-sum[k])+m;
while(head<tail-1&&(turnleft(i,st[tail-1],st[tail-2])==0))
{
tail--;
}
st[tail++]=i;
}
printf("%d\n",f[n]);
memset(sum,0,sizeof sum);
memset(f,0,sizeof f);
memset(st,0,sizeof st);
}
return 0;
}

  

HDU3507 print artical的更多相关文章

  1. HDU3507 Print Article —— 斜率优化DP

    题目链接:https://vjudge.net/problem/HDU-3507 Print Article Time Limit: 9000/3000 MS (Java/Others)    Mem ...

  2. hdu3507 Print Article(斜率DP优化)

    Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it ...

  3. hdu3507 Print Article

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others) P ...

  4. hdu3507 Print Article[斜率优化dp入门题]

    Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)To ...

  5. hdu3507 Print Article(斜率优化入门)(pascal)

    Problem Description Zero has an old printer that doesn't work well sometimes. As it is antique, he s ...

  6. HDU3507 Print Article(斜率优化dp)

    前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs. ...

  7. HDU3507 Print Article (斜率优化DP基础复习)

    pid=3507">传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]−sum[j])2 ...

  8. HDU-3507 Print Article (斜率优化)

    题目大意:将n个数分成若干个区间,每个区间的代价为区间和的平方加上一个常数m,求最小代价. 题目分析:定义状态dp(i)表示前 i 个数已经分好的最小代价,则状态转移方程为 dp(i)=min(dp( ...

  9. 2018.08.29 hdu3507 Print Article(斜率优化dp)

    传送门 这应该算是斜率优化的模板题了. 就是要求打印n个数,每个数有一个参数a[i],每打印一段连续的数[l,r]需要的花费是(a[[l]+...+a[r])2+m" role=" ...

随机推荐

  1. Easy Problem-map和vector的使用

    给出一个包含n个整数的数组,你需要回答若干询问.每次询问包含两个整数k和v,输出从左到右第k个v的下标(数组下标,从左右到右编号1~n). [输入格式] 输入包含多组数据.每组数据第一行为两个整数n和 ...

  2. centos 主从复制

    1.主服务器rpm安装mysql 2.复制一台服务器叫slave(从服务器),一会儿要用 3.在主服务器,修改my.cnf文件 找到server-id,在它的下面加上 binlog-do-db = h ...

  3. Codeforces Round #374 (Div. 2) A B C D 水 模拟 dp+dfs 优先队列

    A. One-dimensional Japanese Crossword time limit per test 1 second memory limit per test 256 megabyt ...

  4. python爬虫抓网页的总结

    python爬虫抓网页的总结 更多 python 爬虫   学用python也有3个多月了,用得最多的还是各类爬虫脚本:写过抓代理本机验证的脚本,写过在discuz论坛中自动登录自动发贴的脚本,写过自 ...

  5. leetcode 155. Min Stack --------- java

    Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. pu ...

  6. 使用配置方式进行ssh的整合以及管理员管理的案例(二)

    (续) 删除Hibernate配置文件的写法: 在applicationContext.xml中添加数据库操作的相关配置: <!-- 配置数据库连接池 -->    <bean id ...

  7. Codeforces Round #121 (Div. 2)

    A. Funky Numbers 记\(a \le b\),枚举\(a\)即可. B. Walking in the Rain 二分时间,然后\(dp(i)\)表示是否能从1到达i. C. Dynas ...

  8. POJ2375 Cow Ski Area (强连通)(缩点)

                                        Cow Ski Area Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  9. poj2375 强连通

    题意:有一个 l * w 大小的滑雪场,每个格子都有一个高度,每个格子可以直接通到上下左右四个格子中高度小于等于自己的格子,现在要建立通道,能够连通任意两个格子,问最少建多少通道能够使所有格子能够互相 ...

  10. html5 input type=search

    <style> input[type="search"]{ border-radius:2px;} input::-webkit-search-cancel-butto ...