2756: [SCOI2012]奇怪的游戏

Time Limit: 40 Sec  Memory Limit: 128 MB

Description

Blinke 最近喜欢上一个奇怪的游戏。 这个游戏在一个 N*M的棋盘上玩,每个格子有一个数。每次 Blinker会选择两个相邻的格子,并使这两个数都加上 1。 

现在 Blinker 想知道最少多少次能使棋盘上的数都变成同一个数,如果永远不能变成同

一个数则输出-1。

Input

输入的第一行是一个整数T,表示输入数据有T轮游戏组成。 

每轮游戏的第一行有两个整数N和M, 分别代表棋盘的行数和列数。 

接下来有N行,每行 M个数。

Output

对于每个游戏输出最少能使游戏结束的次数,如果永远不能变成同一个数则输出-1。

Sample Input

2

2 2

1 2

2 3

3 3

1 2 3

2 3 4

4 3 2

Sample Output

2

-1

HINT【数据范围】

对于30%的数据,保证  T<=10,1<=N,M<=8

对于100%的数据,保证  T<=10,1<=N,M<=40,所有数为正整数且小于1000000000

题解

首先,我们可以很明显的看出最后形成的数\(x\)一定具有单调性,所以我们可以二分\(x\)。

那么如何写\(check(x)\)呢?

首先我们可以将棋盘黑白染色,之后再将黑色与\(T\)相连,将白色与\(S\)相连,再将黑白色之间连接。这样就可以用一个最大流来解决。

因为每个数字都要变为\(x\),所以可以将节点与\(S\)或\(T\)相连的边权设为\(x-val\),之后我们可以将黑白棋子之间的边权设为\(inf\)(其实边权值可以算出,不过由于之前已经限制了边权,所以这里可以不用处理边权)。

因为这个最大流其实就是加了多少次,所以最大流应该等于所有数字与x之差之和的一半。这样,我们就可以写出\(check\)了。

另外,因为\(Cnt[0]*x - Sum[0]=Cnt[1]*x - Sum[1]\),\(Cnt\)表示黑白棋格的个数,\(Sum\)表示黑白棋格各自的和,所以当\(Cnt[0] \neq Cnt[1]\)时,我们可以直接得出\(x\),之后直接\(check(x)\)就好了。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; typedef long long LL;
const int MS = 100000, N = 42;
const LL inl = 1LL << 55; int ina; char inc, inb[1<<16], *ins = inb, *ine = inb; bool insign;
inline char getc() {
if (ins == ine) ine = (ins = inb) + fread(inb, 1, 1 << 16, stdin);
return (ins == ine) ? EOF : *ins++;
}
inline int geti() {
insign = false;
while ((inc = getc()) < '0' || inc > '9') insign |= inc == '-'; ina = inc - '0';
while ((inc = getc()) >= '0' && inc <= '9') ina = (ina << 3) + (ina << 1) + inc - '0';
return insign ? -ina : ina;
} int mp[N][N], n, m;
bool col[N][N];
LL Sum[2], Num[2], mv; namespace CC {
int To[MS], Nxt[MS], totE, head[N * N], S, T, d[N * N], dt[N * N];
LL C[MS];
inline void Adde(int a, int b, LL c) {
To[totE] = b; Nxt[totE] = head[a]; C[totE] = c; head[a] = totE++;
To[totE] = a; Nxt[totE] = head[b]; C[totE] = 0; head[b] = totE++;
} const int dx[] = {0,0,-1,1};
const int dy[] = {1,-1,0,0}; inline int getp(const int &x, const int &y) { return (x-1)*m + y; } LL dfs(int u, LL flow) {
if (u==T||!flow) return flow;
LL res = 0, t;
for (int i = head[u]; ~i; i = Nxt[i])
if (d[u] == d[To[i]] + 1 && C[i] > 0){
t = dfs(To[i], min(flow, C[i]));
C[i] -= t, C[i^1] += t;
res += t, flow -= t;
if (!flow) return res;
if (d[S] > T) return res;
}
if (!(--dt[d[u]])) d[S] = T + 1;
++dt[++d[u]];
return res;
} bool check(LL x) {
memset(head, -1, sizeof head); totE = 0;
S = 0, T = getp(n, m) + 1;
LL t, tot = 0, maxflow = 0;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) {
t = x - mp[i][j];
if (col[i][j]) Adde(getp(i, j), T, t);
else Adde(S, getp(i, j), t);
tot += t;
}
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j)
for (int k = 0; k < 4; ++k) {
int _i = i + dx[k], _j = j + dy[k];
if (_i < 1 || _i > n || _j < 1 || _j > m) continue;
if (!col[i][j]) Adde(getp(i, j), getp(_i, _j), inl);
}
memset(d, 0, sizeof d); memset(dt, 0, sizeof dt);
dt[0] = T + 1;
while (d[S] < T + 1) maxflow += dfs(S, inl);
return tot == (maxflow << 1);
} }
void init() {
memset(col, 0, sizeof col);
n = geti(), m = geti();
*Sum = Sum[1] = *Num = Num[1] = mv = 0LL;
bool st = true;
for (int i = 1; i <= n; ++i)
for (int j = 1; j <= m; ++j) {
if ((mp[i][j] = geti()) > mv) mv = mp[i][j];
col[i][j] = !col[i][j-1];
if (j <= 1) col[i][j] = (st = !st);
++Num[col[i][j]]; Sum[col[i][j]] += mp[i][j];
}
} #define getskip(a) (a*n*m - Sum[0] - Sum[1]) >> 1 void Work() {
if (n * m & 1) {
LL x = Sum[0] - Sum[1];
if (x >= mv && CC::check(x)) printf("%lld\n", getskip(x));
else puts("-1");
} else {
LL l = mv, r = inl / 1000, M, ans = -1;
while (l <= r) {
M = l + r >> 1;
if (CC::check(M)) r = (ans = M) - 1;
else l = M + 1;
}
if (~ans) printf("%lld\n", getskip(ans));
else puts("-1");
}
} int main() {
for (int T = geti(); T; --T) {
init(); Work();
}
return 0;
}

bzoj 2756奇怪的游戏的更多相关文章

  1. [BZOJ 2756] 奇怪的游戏

    Link:https://www.lydsy.com/JudgeOnline/problem.php?id=2756 Algorithm: 比较新颖的题目 首先发现是对矩阵中相邻两数进行操作    & ...

  2. BZOJ 2756 奇怪的游戏(最大流)

    题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2756 题意:在一个 N*M 的棋盘上玩,每个格子有一个数.每次 选择两个相邻的格子,并使 ...

  3. 【BZOJ】【2756】【SCOI2012】奇怪的游戏

    网络流-最大流 这题……建模部分先略过 这道题是会卡时限的T_T俺的Dinic被卡了,在此放几篇很棒的讲网络流算法的文章,至于大家耳熟能详的论文就不放了…… http://www.cppblog.co ...

  4. BZOJ 2756: [SCOI2012]奇怪的游戏 [最大流 二分]

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3352  Solved: 919[Submit][Stat ...

  5. BZOJ 2756: [SCOI2012]奇怪的游戏 网络流/二分

    2756: [SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1594  Solved: 396[Submit][Stat ...

  6. BZOJ 2756 SCOI2012 奇怪的游戏 最大流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2756 Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N ...

  7. bzoj 2756 [SCOI2012]奇怪的游戏 二分+网络流

    2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 4926  Solved: 1362[Submit][Stat ...

  8. bzoj 2756: [SCOI2012]奇怪的游戏

    Description Blinker最近喜欢上一个奇怪的游戏. 这个游戏在一个 N*M 的棋盘上玩,每个格子有一个数.每次 Blinker 会选择两个相邻 的格子,并使这两个数都加上 1. 现在 B ...

  9. BZOJ 2756 【SCOI2012】 奇怪的游戏

    题目链接:奇怪的游戏 一开始这道题想岔了……想到黑白染色后对总格子数按奇偶性分类讨论,然后没发现奇数个格子的可以直接解方程…… 首先可以发现每次操作是给相邻的两个格子权值加一,因此我们把棋盘黑白染色后 ...

随机推荐

  1. SQL SERVER 重组含有特殊字符的索引时遇到“关键字 'with' 附近有语法错误.”

    案例描述 这是在索引重组过程中遇到的有意思的错误案例,搜索了一下也没有看到相关资料,估计我第一个碰到这类错误的人(It's just a joke).具体情况是YourSQLDba在做维护数据库索引时 ...

  2. 从零自学Hadoop(09):使用Maven构建Hadoop工程

    阅读目录 序 Maven 安装 构建 示例下载 系列索引 本文版权归mephisto和博客园共有,欢迎转载,但须保留此段声明,并给出原文链接,谢谢合作. 文章是哥(mephisto)写的,Source ...

  3. 【转】MySQL批量SQL插入各种性能优化

    原文:http://mp.weixin.qq.com/s?__biz=MzA5MzY4NTQwMA==&mid=403182899&idx=1&sn=74edf28b0bd29 ...

  4. 我是如何把VC6一直用到2016年的

    写下这个标题的时候,也是表明必须需要改变的时候了…… 黄山松 (Tom Huang) 发表于博客园http://www.cnblogs.com/tomview/ 最早从windows3.1使用vb3编 ...

  5. Linux的概念与体系

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我在这一系列文章中阐述Linux的基本概念.Linux操作系统继承自UNIX.一个 ...

  6. 自定义shiro的Realm实现和CredentialsMatcher实现以及Token实现

    Realm是shiro比较核心的接口,简单说它的实现类就是校验用户输入的账号信息的地方.如果想自定义实现一般的配置文件如下: <!--自定义Realm 继承自AuthorizingRealm - ...

  7. 树莓派搭建ActiveMQ

    树莓派上安装ActiveMQ和在其它Linux发行版基本相同,只是在开防火墙端口时有区别.   硬件信息: 树莓派3B型,Raspbian系统   安装 //下载ActiveMQ安装包 http:// ...

  8. Jekyll + Github 搭建属于你的静态博客

    1. 搭建Jekyll环境 linux下jekyll的安装非常简单,这里主要讲一下windows下的jekyll的安装过程 这是一台刚刚装完系统的win10系统,它什么都没有,让我们从零开始. 1.1 ...

  9. BZOJ1878: [SDOI2009]HH的项链[树状数组 离线]

    1878: [SDOI2009]HH的项链 Time Limit: 4 Sec  Memory Limit: 64 MBSubmit: 3486  Solved: 1738[Submit][Statu ...

  10. 第9章 Java类的三大特性之一:继承

    1.什么是继承 子类继承父类就是对父类的扩展,继承时会自动拥有父类所拥有的处private之外的所有成员作用:增加代码复用语法格式: class 子类名 extends 父类名{…………}第9章 Ja ...